Skip to main content

Physical Implementation of Large-Scale Quantum Computation

  • Reference work entry
Handbook of Natural Computing

Abstract

The development of large-scale quantum computing started rapidly in 1994 after the presentation of the factoring algorithm by Peter Shor. In this review, the basic requirements for the successful implementation of quantum algorithms on physical systems are first discussed and then a few basic concepts in actual information processing are presented. After that, the current situation is evaluated, concentrating on the most promising methods for which actual experimental progress has taken place. Among these are trapped ions, nuclear spins, and various solid-state structures such as quantum dots and Josephson junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andresen SES, Brenner R, Wellard CJ et al. (2007) Charge state control and relaxation in an atomically doped silicon device. Nano Lett 7:2000–2003

    Article  Google Scholar 

  • Awschalom DD, Loss D, Samarth N (eds) (2002) Semiconductor spintronics and quantum computation. Springer, Berlin

    Google Scholar 

  • Barenco A, Deutsch D, Ekert A (1995) Conditional quantum dynamics and logic gates. Phys Rev Lett 74:4083–4086

    Article  Google Scholar 

  • Barenco A, Ekert A, Suominen K-A, Törmä P (1996) Approximate quantum Fourier transform and decoherence. Phys Rev A 54:139–146

    Article  MathSciNet  Google Scholar 

  • Benhelm J, Kirchmair G, Roos CF, Blatt R (2008) Towards fault-tolerant quantum computing with trapped ions. Nat Phys 4:463–466

    Article  Google Scholar 

  • Bennett CH, DiVincenzo DP, Smolin JA, Wootters WK (1996) Mixed state entanglement and quantum error correction. Phys Rev A 54:3824–3851

    Article  MathSciNet  Google Scholar 

  • Berkley AJ, Xu H, Ramos RC et al. (2003) Entangled macroscopic quantum states in two superconducting qubits. Science 300:1548–1550

    Article  Google Scholar 

  • Birkl G, Kassner S, Walther H (1992) Multiple-shell structures of laser-cooled 24Mg+ ions in a quadrupole storage ring. Nature 357:310–313

    Article  Google Scholar 

  • Briegel HJ, Raussendorf R (2001) Persistent entanglement in arrays of interacting particles. Phys Rev Lett 86:910–913

    Article  Google Scholar 

  • Blais A, Huang R-S, Wallraff A, Girvin SM, Schoelkopf RJ (2004) Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys Rev A 69:062320

    Article  Google Scholar 

  • Bloch I (2005) Ultracold quantum gases in optical lattices. Nat Phys 1:23–30

    Article  Google Scholar 

  • Bremner MJ, Dawson CM, Dodd JL et al. (2002) Practical scheme for quantum computation with any two-qubit entangling gate. Phys Rev Lett 89:247902

    Article  Google Scholar 

  • Burkard G, Loss D, DiVincenzo DP (1999) Coupled quantum dots as quantum gates. Phys Rev B 59:2070–2078

    Article  Google Scholar 

  • Calderbank AR, Shor PW (1996) Good quantum error-correcting codes exist. Phys Rev A 54:1098–1105

    Article  Google Scholar 

  • Chen G, Bonadeo NH, Steel DG et al. (2000) Optically induced entanglement of excitons in a single quantum dot. Science 289:1906–1909

    Article  Google Scholar 

  • Chen G, Church DA, Englert B-G et al. (2007) Quantum computing devices. Chapman & Hall/CRC, Boca Raton, FL

    MATH  Google Scholar 

  • Childress L, Gurudev Dutt MV, Taylor JM et al. (2006) Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314:281–285

    Article  Google Scholar 

  • Childs AM, Farhi E, Preskill J (2001) Robustness of adiabatic quantum computation. Phys Rev A 65:012322

    Article  Google Scholar 

  • Chiorescu I, Nakamura Y, Harmans CJPM, Mooij JE (2003) Coherent quantum dynamics of a superconducting flux qubit. Science 299:1869–1871

    Article  Google Scholar 

  • Chuang IL, Gershenfeld N, Kubinec M (1998) Experimental implementation of fast quantum searching. Phys Rev Lett 80:3408–3411

    Article  Google Scholar 

  • Chuang IL, Vandersypen LMK, Zhou X et al. (1998) Experimental realization of a quantum algorithm. Nature 393:143–146

    Article  Google Scholar 

  • Cirac JI, Zoller P (1995) Quantum computations with cold trapped ions. Phys Rev Lett 74:4091–4094

    Article  Google Scholar 

  • Cleve R, Ekert A, Macchiavello C, Mosca M (1998) Quantum algorithms revisited. Proc R Soc Lond A 454:339–354

    Article  MathSciNet  MATH  Google Scholar 

  • Coppersmith D (1994) An approximate Fourier transform useful in quantum factoring. IBM Research Report RC19642; see also arXiv quant-ph/0201067 (2002)

    Google Scholar 

  • Dahm AJ, Heilman JA, Karakurt I, Peshek TJ (2003) Quantum computing with electrons on helium. Physica E 18:169–172

    Article  Google Scholar 

  • DiVincenzo DP (1995) Quantum computation. Science 270:255–261

    Article  MathSciNet  MATH  Google Scholar 

  • DiVincenzo DP (2000) The physical implementation of quantum computation. Fortschritte der Physik 48:771–783

    Article  MATH  Google Scholar 

  • DiVincenzo DP, Bacon D, Kempe J et al. (2000) Universal quantum computation with the exchange interaction. Nature 408:339–342

    Article  Google Scholar 

  • Duan L-M, Guo G-C (1997) Preserving coherence in quantum computation by pairing quantum bits. Phys Rev Lett 79:1953–1956

    Article  Google Scholar 

  • Dykman MI, Platzman PM (2000) Quantum computing using electrons floating on liquid helium. Fortschritte der Physik 48:1095–1108

    Article  Google Scholar 

  • Dykman MI, Platzman PM, Seddighrad P (2003) Qubits with electrons on liquid helium. Phys Rev B 67:155402

    Article  Google Scholar 

  • van Enk SJ, Kimble HJ, Mabuchi H (2004) Quantum information processing in cavity-QED. Quantum Inf Process 3:75–90

    Article  MATH  Google Scholar 

  • Farhi E, Goldstone J, Gutmann S, Sipser M (2000) Quantum computation by adiabatic evolution. arXiv quant-ph/0001106

    Google Scholar 

  • Feynman RP (1982) Simulating physics with computers. Int J Theor Phys 21:467–488

    Article  MathSciNet  Google Scholar 

  • Friedman JR, Patel V, Chen W et al. (2000) Quantum superposition of distinct macroscopic states. Nature 406:43–46

    Article  Google Scholar 

  • Gaitan F (2008) Quantum error correction and fault tolerant quantum computing. CRC Press, Boca Raton, FL

    MATH  Google Scholar 

  • Gershenfeld NA, Chuang IL (1997) Bulk spin-resonance quantum computation. Science 275:350–356

    Article  MathSciNet  MATH  Google Scholar 

  • Gottesman D (1996) Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys Rev A 54:1862–1868

    Article  MathSciNet  Google Scholar 

  • Grimes CC, Adams G (1979) Evidence for a liquid-to-crystal phase transition in a classical, two-dimensional sheet of electrons. Phys Rev Lett 42:795–798

    Article  Google Scholar 

  • Grover LK (1997) Quantum mechanics helps in searching for a needle in a haystack. Phys Rev Lett 79:325–328

    Article  Google Scholar 

  • Häffner H, Roos CF, Blatt R (2008) Quantum computing with trapped ions. Phys Rep 469:155–203

    Article  MathSciNet  Google Scholar 

  • Hanson R, Kouwenhoven LP, Petta JR et al. (2007) Spins in few-electron quantum dots. Rev Mod Phys 79:1217

    Article  Google Scholar 

  • Haroche S, Raimond J-M (1996) Quantum computing: dream or nightmare? Phys Today 49(8):51–52

    Article  Google Scholar 

  • Haroche S, Raimond J-M (2006) Exploring the quantum: atoms, cavities and photons. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Hime T, Reichardt PA, Plourde BLT et al. (2006) Solid-state qubits with current-controlled coupling. Science 314:1427–1429

    Article  Google Scholar 

  • Hirvensalo M (2004) Quantum computing, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Horvath GZsK, Thompson RC, Knight PL (1997) Fundamental physics with trapped ions. Contemp Phys 38:25–48

    Article  Google Scholar 

  • Houck AA, Schuster DI, Gambetta JM et al. (2007) Generating single microwave photons in a circuit. Nature 449:328–331

    Article  Google Scholar 

  • Jamieson DN, Yang C, Hopf T et al. (2005) Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions. Appl Phys Lett 86:202101

    Article  Google Scholar 

  • Jelezko F, Gaebel T, Popa I et al. (2004) Observation of coherent oscillations in a single electron spin. Phys Rev Lett 92:076401

    Article  Google Scholar 

  • Jelezko F, Gaebel T, Popa I et al. (2004) Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. Phys Rev Lett 93:130501

    Article  Google Scholar 

  • Jones JA (2000) NMR quantum computation: a critical evaluation. Fortschritte der Physik 48:909–924

    Article  Google Scholar 

  • Jones JA, Mosca M, Hansen RH (1998) Implementation of a quantum search algorithm on a quantum computer. Nature 393:344

    Article  Google Scholar 

  • Kane BE (1998) A silicon-based nuclear spin quantum computer. Science 393:133–137

    Google Scholar 

  • Kielpinski D, Monroe C, Wineland DJ (2002) Architecture for a large-scale ion-trap quantum computer. Nature 417:709

    Article  Google Scholar 

  • Kim J, Lee J-S, Lee S (2002) Experimental realization of a target-accepting quantum search by NMR. Phys Rev A 65:054301

    Article  Google Scholar 

  • Kitaev A (1997) Fault-tolerant quantum computation by anyons. Ann Phys 303:2–30. see also arXiv quant-ph/9707021

    MathSciNet  Google Scholar 

  • Knill E (2005) Quantum computing with realistically noisy devices. Nature 434:39–44

    Article  Google Scholar 

  • Knill E, Laflamme R, Milburn GJ (2001) A scheme for efficient quantum computation with linear optics. Nature 409:46–52

    Article  Google Scholar 

  • Koppens FHL, Buizert C, Tielrooij KJ et al. (2006) Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442:766–771

    Article  Google Scholar 

  • Koppens FHL, Folk JA, Elzerman JM et al. (2005) Control and detection of singlet-triplet mixing in a random nuclear field. Science 309:1346–1350

    Article  Google Scholar 

  • Laflamme R, Miquel C, Paz JP, Zurek WH (1996) Perfect quantum error correcting code. Phys Rev Lett 77:198–201

    Article  Google Scholar 

  • Li X, Wu Y, Steel D et al. (2003) An all-optical quantum gate in a semiconductor quantum dot. Science 301:809–811

    Article  Google Scholar 

  • Lidar DA, Chuang IL, Whaley KB (1998) Decoherence-free subspaces for quantum computation. Phys Rev Lett 81:2594–2597

    Article  Google Scholar 

  • Loss D, DiVincenzo DP (1998) Quantum computation with quantum dots. Phys Rev A 57:120–126

    Article  Google Scholar 

  • Lütkenhaus N, Calsamiglia J, Suominen K-A (1999) Bell measurements for teleportation. Phys Rev A 59:3295–3300

    Article  MathSciNet  Google Scholar 

  • Lyon SA (2006) Spin-based quantum computing using electrons on liquid helium. Phys Rev A 74:052338

    Article  Google Scholar 

  • Majer J, Chow JM, Gambetta JM et al. (2007) Coupling superconducting qubits via a cavity bus. Nature 449:443–447

    Article  Google Scholar 

  • Majer JB, Paauw FG, ter Haar ACJ et al. (2005) Spectroscopy on two coupled superconducting flux qubits. Phys Rev Lett 94:090501

    Article  Google Scholar 

  • Makhlin Y, Schön G, Shnirman A (1999) Josephson-junction qubits with controlled couplings. Nature 398:305–307

    Article  Google Scholar 

  • Makhlin Y, Schön G, Shnirman A (2000) Quantum-state engineering with Josephson-junction devices. Rev Mod Phys 73:357–400

    Article  Google Scholar 

  • Mermin ND (2007) Quantum computer science: an introduction. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Metcalf HJ, Van der Straten P (1999) Laser cooling and trapping. Springer, Berlin

    Book  Google Scholar 

  • Mollin RA (2002) RSA and public-key cryptography. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Monroe C, Meekhof DM, King BE et al. (1995) Demonstration of a fundamental quantum logic gate. Phys Rev Lett 75:4714–4717

    Article  MathSciNet  MATH  Google Scholar 

  • Monz T, Kim K, Hänsel W et al. (2009) Realization of the quantum Toffoli gate with trapped ions. Phys Rev Lett 102:040501

    Article  Google Scholar 

  • Mooij JE, Orlando TP, Levitov L et al. (1999) Josephson persistent-current qubit. Science 285:1036–1039

    Article  Google Scholar 

  • Morton JJL, Tyryshkin AM, Brown RM et al. (2008) Solid-state quantum memory using the 31P nuclear spin. Nature 455:1085–1088

    Article  Google Scholar 

  • Nägerl HC, Bechter W, Eschner J et al. (1998) Ion strings for quantum gates. Appl Phys B 66:603–608

    Article  Google Scholar 

  • Nakahara M, Ohmi T (2008) Quantum computing: from linear algebra to physical realizations. CRC Press, Boca Raton, FL

    Book  MATH  Google Scholar 

  • Nakamura Y, Pashkin YA, Tsai JS (1999) Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398:786–788

    Article  Google Scholar 

  • Nayak C, Simon SH, Stern A et al. (2008) Non-Abelian anyons and topological quantum computation. Rev Mod Phys 80:1083

    Article  MathSciNet  MATH  Google Scholar 

  • Negrevergne C, Mahesh TS, Ryan CA et al. (2006) Benchmarking quantum control methods on a 12-qubit system. Phys Rev Lett 96:170501

    Article  Google Scholar 

  • Neumann P, Mizuochi N, Rempp F et al. (2008) Multipartite entanglement among single spins in diamond. Science 320:1326–1329

    Article  Google Scholar 

  • Nielsen MA, Chuang IL (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Niskanen AO, Harrabi K, Yoshihara F et al. (2007) Quantum coherent tunable coupling of superconducting qubits. Science 316:723–726

    Article  Google Scholar 

  • O'Brien JL (2007) Optical quantum computing. Science 318:1567–1570

    Article  Google Scholar 

  • O'Brien JL, Pryde GJ, White AG et al. (2003) Demonstration of an all-optical quantum controlled-NOT gate. Nature 426:264–267

    Article  Google Scholar 

  • O'Brien JL, Schofield SR, Simmons MY et al. (2001) Towards the fabrication of phosphorus qubits for a silicon quantum computer. Phys Rev B 64:161401

    Article  Google Scholar 

  • Oliveira I, Sarthour R Jr, Bonagamba T et al. (2007) NMR quantum information processing, Elsevier, Amsterdam

    Google Scholar 

  • Palma GM, Suominen K-A, Ekert AK (1996) Quantum computers and dissipation. Proc R Soc Lond A 452:567–584

    Article  MathSciNet  MATH  Google Scholar 

  • Pashkin YA, Yamamoto T, Astafiev O et al. (2003) Quantum oscillations in two coupled charge qubits. Nature 421:823–826

    Article  Google Scholar 

  • Pethick CJ, Smith H (2008) Bose-Einstein condensation in dilute gases, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Platzman PM, Dykman MI (1999) Quantum computing with electrons floating on liquid helium. Science 284:1967–1969

    Article  Google Scholar 

  • van der Ploeg SHW, Izmalkov A, van den Brink AM et al. (2007) Controllable coupling of superconducting flux qubits. Phys Rev Lett 98:057004

    Article  Google Scholar 

  • Prawer S, Greentree AD (2008) Diamond for quantum computing. Science 320:1601–1602

    Article  Google Scholar 

  • Raussendorf R, Briegel HJ (2001) A one-way quantum computer. Phys Rev Lett 86:5188–5191

    Article  Google Scholar 

  • Rousseau E, Ponarin D, Hristakos L et al. (2009) Addition spectra of Wigner islands of electrons on superfluid helium. Phys Rev B 79:045406

    Article  Google Scholar 

  • Sabouret G, Lyon SA (2006) Measurement of the charge transfer efficiency of electrons clocked on superfluid helium. App Phys Lett 88:254105

    Article  Google Scholar 

  • Sachdev S (1999) Quantum phase transitions. Cambridge University Press, Cambridge

    Google Scholar 

  • Schaetz T, Leibfried D, Chiaverini J et al. (2004) Towards a scalable quantum computer/simulator based on trapped ions. Appl Phys B 79:979–986

    Article  Google Scholar 

  • Schmidt-Kaler F, Häffner H, Gulde S et al. (2003a) How to realize a universal quantum gate with trapped ions. Appl Phys B 77:789–796

    Article  Google Scholar 

  • Schmidt-Kaler F, Häffner H, Riebe M et al. (2003b) Realization of the Cirac-Zoller controlled-NOT quantum gate. Nature 422:408–411

    Article  Google Scholar 

  • Schuster DI, Blais A, Frunzio L et al. (2004) Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431:162–167

    Article  Google Scholar 

  • Sherwin MS, Imamoglu A, Montroy T (1999) Quantum computation with quantum dots and terahertz cavity quantum electrodynamics. Phys Rev A 60:3508–3514

    Article  Google Scholar 

  • Shnirman A, Schön G, Hermon Z (1997) Quantum manipulations of small Josephson junctions. Phys Rev Lett 79:2371–2374

    Article  Google Scholar 

  • Shor PW (1994) Algorithms for quantum computation: discrete log and factoring. Proceedings of the 35th annual IEEE symposium on foundations of computer science, FOCS, Paris, pp 20–22

    Google Scholar 

  • Shor PW (1995) Scheme for reducing decoherence in quantum computer memory. Phys Rev A 52:R2493–R2496

    Article  Google Scholar 

  • Sillanpää MA, Park JI, Simmonds RW (2007) Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449: 438–442

    Article  Google Scholar 

  • Sjöqvist E (2008) A new phase in quantum computation. Physics 1:35

    Article  Google Scholar 

  • Sørensen A, Mølmer K (1999a) Quantum computation with ions in thermal motion. Phys Rev Lett 82: 1971–1974

    Article  Google Scholar 

  • Sørensen A, Mølmer K (1999b) Entanglement and quantum computation with ions in thermal motion. Phys Rev A 62:022311

    Article  Google Scholar 

  • Steane AM (1996) Error correcting codes in quantum theory. Phys Rev Lett 77:793–797

    Article  MathSciNet  MATH  Google Scholar 

  • Steane AM (1998) Quantum computing. Rep Prog Phys 61:117–173

    Article  MathSciNet  Google Scholar 

  • Steffen M, Ansmann M, Bialczak RC et al. (2006) Measurement of the entanglement of two superconducting qubits via state tomography. Science 313:1423–1425

    Article  MathSciNet  Google Scholar 

  • Stenholm S, Suominen K-A (2005) Quantum approach to informatics. Wiley, Hoboken, NJ

    Book  MATH  Google Scholar 

  • Stolze J, Suter D (2008) Quantum computing, revised and enlarged: a short course from theory to experiment, 2nd edn., Wiley-VCH, Weinheim

    Google Scholar 

  • Tilley DR, Tilley J (1990) Superfluidity and superconductivity. Taylor & Francis, London

    Google Scholar 

  • Tinkham M (2004) Introduction to superconductivity, 2nd edn. Dover, New York

    Google Scholar 

  • Troiani F, Hohenester U, Molinari E (2000) Exploiting exciton-exciton interactions in semiconductor quantum dots for quantum-information processing. Phys Rev B 62:R2263–R2266

    Article  Google Scholar 

  • Turchette QA, Hood CJ, Lange W, Mabuchi H, Kimble HJ (1995) Measurement of conditional phase shifts for quantum logic. Phys Rev Lett 75:4710–4713

    Article  MathSciNet  Google Scholar 

  • Unruh WG (1995) Maintaining coherence in quantum computers. Phys Rev A 51:992–997

    Article  MathSciNet  Google Scholar 

  • Vandersypen LMK, Chuang IL (2004) NMR techniques for quantum control and computation. Rev Mod Phys 76:1037–1069

    Article  Google Scholar 

  • Vandersypen LMK, Steffen M, Sherwood MH et al. (2000) Implementation of a three-quantum-bit search algorithm. Appl Phys Lett 76:646–649

    Article  Google Scholar 

  • Vandersypen LMK, Steffen M, Breyta G et al. (2001) Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance. Nature 414:883–887

    Article  Google Scholar 

  • Vedral V (2006) Introduction to quantum information science. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  • Vrijen R, Yablonovitch E, Wang K et al. (2000) Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures. Phys Rev A 62:012306

    Article  Google Scholar 

  • van der Wal CH, ter Haar ACJ, Wilhelm FK et al. (2000) Quantum superposition of macroscopic persistent-current states. Science 290:773–777

    Article  Google Scholar 

  • Yamamoto T, Pashkin YA, Astafiev O et al. (2003) Demonstration of conditional gate operation using superconducting charge qubits. Nature 425:941–944

    Article  Google Scholar 

  • Zanardi P, Rasetti M (1997) Noiseless quantum codes. Phys Rev Lett 79:3306–3309

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges the financial support by the Academy of Finland, the Väisälä Foundation, and the Magnus Ehrnrooth Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalle-Antti Suominen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Suominen, KA. (2012). Physical Implementation of Large-Scale Quantum Computation. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_44

Download citation

Publish with us

Policies and ethics