Skip to main content

Evolvable Hardware

  • Reference work entry
Handbook of Natural Computing

Abstract

This chapter surveys the field of evolvable hardware. After a brief overview of the reconfigurable devices used in evolvable hardware, elementary principles of evolvable hardware, corresponding terminology, and open problems in the field are introduced. Then, the chapter is divided into three main parts: extrinsic evolution, intrinsic evolution, and adaptive hardware. Extrinsic evolution (i.e., evolution using simulators) covers evolutionary design of digital circuits, analog circuits, antennas, optical systems, and microelectromechanical systems (MEMS). Intrinsic evolution conducted in field programmable gate arrays (FPGAs), field programmable transistor arrays (FPTAs), field programmable analog arrays (FPAAs), and some unconventional devices is discussed together with a description of the most successful applications. Examples of real-world adaptive hardware systems are also presented. Finally, an overview of major achievements and problems is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal V, Mao M, O'Reilly UM (2006) A self-tuning analog proportional-integral-derivative (PID) controller. In: AHS '06: Proceedings of the first NASA/ESA conference on adaptive hardware and systems. IEEE Computer Society, Washington, DC, USA, pp 12–19

    Chapter  Google Scholar 

  • Ali B, Almaini AEA, Kalganova T (2004) Evolutionary algorithms and their use in the design of sequential logic circuits. Genet Programming Evol Mach 5(1):11–29

    Article  Google Scholar 

  • Anadigm (2007) Anadigm, AN221E04 – field programmable analog arrays – user manual. URL http://www.anadigm.com_doc/UM021200-U007.pdf

    Google Scholar 

  • Bartels RA, Murnane MM, Kapteyn HC, Christov I, Rabitz H (2004) Learning from learning algorithms: applications to attosecond dynamics of high-harmonic generation. Phys Rev A 70(1):1–5

    Google Scholar 

  • Bentley PJ (ed) (1999) Evolutionary design by computers. Morgan Kaufmann, San Francisco, CA

    MATH  Google Scholar 

  • Bentley PJ, Corne DW (2002) Creative evolutionary systems. Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  • Bernardi P, Sanchez E, Schillaci M, Squillero G, Reorda MS (2008) An effective technique for the automatic generation of diagnosis-oriented programs for processor cores. IEEE Trans Comput-Aided Des Integr Circuits Syst 27(3):570–574

    Article  Google Scholar 

  • Bidlo M, Skarvada J (2008) Instruction-based development: from evolution to generic structures of digital circuits. Int J Knowl-Based Intell Eng Syst 12(3):221–236

    Google Scholar 

  • Blodget B, James-Roxby P, Keller E, McMillan S, Sundararajan P (2003) A self-reconfiguring platform. In: Proceedings of the 13th conference on field programmable logic and applications FPL'03, Lisbon, Portugal, LNCS, vol 2778. Springer Verlag, pp 565–574

    Google Scholar 

  • Drechsler R (1998) Evolutionary algorithms for VLSI CAD. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Durbeck L, Macias N (2001) The cell matrix: an architecture for nanocomputing. Nanotechnology 12(3):217–230

    Article  Google Scholar 

  • Eiben AE, Smith JE (2003) Introduction to evolutionary computing. Springer, Berlin

    MATH  Google Scholar 

  • Erba M, Rossi R, Liberali V, Tettamanzi A (2001) An evolutionary approach to automatic generation of VHDL code for low-power digital filters. In: Proceedings of the 4th European conference on genetic programming EuroGP2001, LNCS, vol 2038. Springer Verlag, Berlin, pp 36–50

    Google Scholar 

  • Gao P, McConaghy T, Gielen G (2008) ISCLES: importance sampled circuit learning ensembles for trustworthy analog circuit topology synthesis. In: Proceedings of the 8th international conference on evolvable systems: from biology to hardware. LNCS, vol 5216. Springer Verlag, Berlin, pp 11–21

    Chapter  Google Scholar 

  • de Garis H (1993) Evolvable hardware – genetic programming of a Darwin Machine. In: International conference on artificial neural networks and genetic algorithms, Innsbruck, Austria. Springer Verlag

    Google Scholar 

  • Garvie M (2005) Reliable electronics through artificial evolution. PhD thesis, University of Sussex

    Google Scholar 

  • Glette K (2008) Design and implementation of scalable online evolvable hardware pattern recognition systems. PhD thesis, University of Oslo

    Google Scholar 

  • Glette K, Torresen J, Yasunaga M (2007) An online EHW pattern recognition system applied to sonar spectrum classification. In: Evolvable systems: from biology to hardware, LNCS, vol 4684. Springer Verlag, pp 1–12

    Chapter  Google Scholar 

  • Glette K, Torresen J, Gruber T, Sick B, Kaufmann P, Platzner M (2008) Comparing evolvable hardware to conventional classifiers for electromyographic prosthetic hand control. In: Proceedings of the 2008 NASA/ESA conference on adaptive hardware and systems, Noordwijk. IEEE Computer Society, pp 32–39

    Google Scholar 

  • Gordon T (2005) Exploiting development to enhance the scalability of hardware evolution. PhD thesis, Department of Computer Science, University College, London

    Google Scholar 

  • Gordon TGW, Bentley PJ (2002) Towards development in evolvable hardware. In: Proceedings of the 2002 NASA/DoD conference on evolvable hardware. IEEE Computer Society Press, Washington, DC, pp 241–250

    Chapter  Google Scholar 

  • Greensted A, Tyrrell A (2007) RISA: a hardware platform for evolutionary design. In: Proceedings of 2007 IEEE workshop on evolvable and adaptive hardware, Long Beach, CA. IEEE, pp 1–7

    Chapter  Google Scholar 

  • Greenwood G, Tyrrell AM (2007) Introduction to evolvable hardware. IEEE Press, Los Alamitos, CA

    Google Scholar 

  • Gross R, Bonani M, Mondada F, Dorigo M (2006) Autonomous self-assembly in Swarm-Bots. IEEE Trans Robot 22(6):1115–1130

    Article  Google Scholar 

  • Gwaltney D, Dutton K (2005) A VHDL core for intrinsic evolution of discrete time filters with signal feedback. In: Proceedings of the 2005 NASA/DoD conference on evolvable hardware. IEEE Computer Society, Washington, DC, USA, pp 43–50

    Google Scholar 

  • Haddow PC (2008) Evolvable hardware: a tool for reverse engineering of biological systems. In: Proc. of the 8th int. conference on evolvable systems: from biology to hardware. LNCS, vol 5216. Springer Verlag, Berlin, pp 342–351

    Chapter  Google Scholar 

  • Harding S (2008) Evolution of image filters on graphics processor units using Cartesian genetic programming. In: 2008 IEEE world congress on computational intelligence. IEEE CIS, Hong Kong, pp 1921–1928

    Chapter  Google Scholar 

  • Harding SL (2006) Evolution in materio. Ph.D. thesis, University of York

    Google Scholar 

  • Harding SL, Miller JF, Rietman EA (2008) Evolution in materio: exploiting the physics of materials for computation. J Unconventional Comput 4(2):155–194

    Google Scholar 

  • Harris SP, Ifeachor EC (1995) Automating IIR filter design by genetic algorithm. In: Proceedings of the first IEE/IEEE international conference on genetic algorithms in engineering systems: innovations and applications (GALESIA'95), vol 414. IEE, London, pp 271–275

    Google Scholar 

  • Hauck S, DeHon A (2008) Reconfigurable computing: the theory and practice of FPGA-based computation. Morgan Kaufmann, Seattle, WA

    MATH  Google Scholar 

  • Haupt RL, Werner DH (2007) Genetic algorithms in electromagnetics. Wiley-IEEE Press, Hoboken, NJ

    Book  Google Scholar 

  • Henrici F, Becker J, Buhmann A, Ortmanns M, Manoli Y (2007) A continuous-time field programmable analog array using parasitic capacitance GM-C filters. In: Proceedings of the IEEE international symposium on circuits and systems. IEEE New Orleans, LA, pp 2236–2239

    Chapter  Google Scholar 

  • Higuchi T, Iwata M, Keymeulen D, Sakanashi H, Murakawa M, Kajitani I, Takahashi E, Toda K, Salami M, Kajihara N, Otsu N (1999) Real-world applications of analog and digital evolvable hardware. IEEE Trans Evolut Comput 3(3):220–235

    Article  Google Scholar 

  • Higuchi T, Liu Y, Yao X (2006) Evolvable hardware. Springer, Berlin

    Book  MATH  Google Scholar 

  • Higuchi T, Niwa T, Tanaka T, Iba H, de Garis H, Furuya T (1993) Evolving hardware with genetic learning: a first step towards building a Darwin machine. In: Proceedings of the 2nd international conference on simulated adaptive behavior. MIT Press, Cambridge, MA, pp 417–424

    Google Scholar 

  • Hornby G, Globus A, Linden D, Lohn J (2006) Automated antenna design with evolutionary algorithms. In: Proceedings 2006 AIAA Space Conference. AIAA, San Jose, CA, pp 1–8

    Google Scholar 

  • Hounsell BI, Arslan T, Thomson R (2004) Evolutionary design and adaptation of high performance digital filters within an embedded reconfigurable fault tolerant hardware platform. Soft Comput 8(5):307–317

    Article  Google Scholar 

  • Huelsbergen L, Rietman E, Slous R (1999) Evolving oscillators in silico. IEEE Trans Evolut Comput 3(3):197–204

    Article  Google Scholar 

  • Ifeachor E, Jervis B (2002) Digital signal processing: a practical approach (2nd edn). Prentice-Hall Upper Saddle River, NJ

    Google Scholar 

  • Kajitani I, Hoshino T, Nishikawa D, Yokoi H, Nakaya S, Yamauchi T, Inuo T, Kajihara N, Iwata M, Keymeulen D, Higuchi T (1998) A gate-level EHW chip: implementing GA operations and reconfigurable hardware on a single LSI. In: Proceedings of the 2nd International conference on evolvable systems: from biology to hardware ICES’ 98, Lausanne, Switzerland, LNCS, vol 1478. Springer, pp 1–12

    Google Scholar 

  • Kajitani I, Iwata M, Higuchi T (2006) A GA hardware engine and its applications. In: Higuchi T, Liu Y, Yao X (eds) Evolvable hardware, Springer, Heidelberg, pp 41–63

    Chapter  Google Scholar 

  • Kajitani I, Sekita I, Otsu N, Higuchi T (2001) Improvements to the action decision rate for a multi-function prosthetic hand. In: The first international symposium on measurement, analysis and modeling of human functions. Sapporo, pp 84–89

    Google Scholar 

  • Kamalian R, Zhou N, Agogino M (2002) A comparison of MEMS synthesis techniques. In: Proceedings of the 1st Pacific Rim Workshop on Transducers and Micro/Nano Technologies. Xiamen, China, pp 239–242

    Google Scholar 

  • Kasai Y, Takahashi E, Iwata M, Iijima Y, Sakanashi H, Murakawa M, Higuchi T (2005) Adaptive waveform control in a data transceiver for multi-speed IEEE 1394 and USB communication. In: Evolvable systems: from biology to hardware, 6th International conference, ICES 2005, Sitges, Spain, LNCS, vol 3637. Springer, Berlin, 198–204

    Chapter  Google Scholar 

  • Keymeulen D, Durantez M, Konaka K, Kuniyoshi Y, Higuchi T (1997) An evolutionary robot navigation system using a gate-level evolvable hardware. In: Proceedings of the 1st International conference on evolvable systems: from biology to hardware ICES'96, LNCS, vol 1259. Tsukuba, Japan, Springer, Berlin, pp 195–209

    Google Scholar 

  • Keymeulen D, Ferguson MI, Breuer L, Fink W, Oks B, Peay C, Terrile R, Kim Y-CD, MacDonald E, Foor D (2006) Hardware platforms for electrostatic tuning of MEMS gyroscope using nature-inspired computation. In: Higuchi T, Liu Y, Yao X (eds) Evolvable Hardware. Springer, Berlin, pp 209–222

    Chapter  Google Scholar 

  • Keymeulen D, Zebulum R, Jin Y, Stoica A (2000) Fault-tolerant evolvable hardware using field-programmable transistor arrays. IEEE Trans Reliability 49(3):305–316

    Article  Google Scholar 

  • Kitano H (1999) Morphogenesis for evolvable systems. In: Towards evolvable hardware: the evolutionary engineering approach. LNCS, vol 1062. Springer, Berlin, pp 99–117

    Chapter  Google Scholar 

  • Koza JR, Al-Sakran SH, Jones LW (2005) Automated re-invention of six patented optical lens systems using genetic programming. In: GECCO'05: Proceedings of the 2005 conference on genetic and evolutionary computation. ACM, New York, NY, USA, pp 1953–1960

    Google Scholar 

  • Koza JR, Bennett FH, Andre D, Keane MA (1999) Genetic programming III: Darwinian invention and problem solving. Morgan Kaufmann Publishers, San Francisco, CA

    MATH  Google Scholar 

  • Koza JR, Keane MA, Streeter MJ, Mydlowec W, Yu J, Lanza G (2003) Genetic programming IV: routine human-competitive machine intelligence. Kluwer Academic Publishers, Norwell, MA

    Google Scholar 

  • Langeheine J (2005) Intrinsic hardware evolution on the transistor level. Ph.D. thesis, Rupertus Carola University of Heidelberg

    Google Scholar 

  • Larsson E (2005) Introduction to advanced system-on-chip test design and optimization. Springer, Dordrecht

    Google Scholar 

  • Layzell PJ (1998) A new research tool for intrinsic hardware evolution. In: Proceedings of the evolvable systems: from biology to hardware conference. LNCS, vol 1478. Springer, Lausanne, Switzerland pp 47–56

    Chapter  Google Scholar 

  • Li H, Antonsson EK (1998) Genetic algorithms in MEMS synthesis. In: Proceedings of IMECE'98 1998 ASME International mechanical engineering congress and expositions, Anaheim, CA

    Google Scholar 

  • Linden D (1997) Automated design and optimization of antennas using genetic algorithms. PhD thesis, MIT Cambridge

    Google Scholar 

  • Linden DS (2001) A system for evolving antennas in-situ. In: EH'01: Proceedings of the 3rd NASA/DoD workshop on evolvable hardware, IEEE Computer Society, Washington, DC, USA, pp 249–255

    Chapter  Google Scholar 

  • Lipson H, Pollack JB (2000) Automatic design and manufacture of robotic lifeforms. Nature 406:974–978

    Article  Google Scholar 

  • Lohn JD, Hornby GS (2006) Evolvable hardware: using evolutionary computation to design and optimize hardware systems. IEEE Computat Intell Mag 1(1):19–27

    Article  Google Scholar 

  • Lohn JD, Kraus WF, Hornby GS (2007) Automated design of a MEMS resonator. In: Proceedings of the IEEE congress on evolutionary computation, Singapore, pp 3486–3491

    Google Scholar 

  • Loktev M, Soloviev O, Vdovin G (2003) Adaptive optics – product guide. OKO Technologies, Delft

    Google Scholar 

  • Mange D, Sipper M, Stauffer A, Tempesti G (2000) Towards robust integrated circuits: the embryonics approach. Proc IEEE 88(4):516–541

    Article  Google Scholar 

  • Martinek T, Sekanina L (2005) An evolvable image filter: experimental evaluation of a complete hardware implementation in FPGA. In: Evolvable systems: from biology to hardware, LNCS, vol 3637. Springer Verlag, Sitges, Spain, pp 76–85

    Chapter  Google Scholar 

  • Miller J, Job D, Vassilev V (2008) Principles in the evolutionary design of digital circuits – Part I. Genet programming evol Mach 1(1):8–35

    Google Scholar 

  • Miller J, Thomson P (2000) Cartesian genetic programming. In: Proceedings of the 3rd European conference on genetic programming EuroGP2000, LNCS, vol 1802. Springer, Edinburgh, Scotland, pp 121–132

    Google Scholar 

  • Moreno JM, Eriksson J, Iglesias J, Villa AEP (2005) Implementation of biologically plausible spiking neural networks models on the poetic tissue. In: Proceedings of evolvable systems: from biology to hardware, Sitges, Spain, LNCS, vol 3637. Springer, pp 188–197

    Chapter  Google Scholar 

  • Murakawa M, Kasai Y, Sakanashi H, Higuchi T (2006) Evolvable analog lSI. In: Higuchi T, Liu Y, Yao X (eds) Evolvable hardware. Springer, Berlin, pp 121–143

    Chapter  Google Scholar 

  • Murakawa M, Yoshizawa S, Kajitani I, Furuya T, Iwata M, Higuchi T (1996) Evolvable hardware at function level. In: Parallel problem solving from nature PPSN IV. LNCS, vol 1141. Springer, Berlin, pp 62–71

    Google Scholar 

  • Murakawa M, Yoshizawa S, Adachi T, Suzuki S, Takasuka K, Iwata M, Higuchi T (1998) Analogue EHW chip for intermediate frequency filters. In: Evolvable systems: from biology to hardware, second International conference, ICES 98, Lausanne, Switzerland, LNCS, vol 1478. Springer, Heidelberg, pp 134–143

    Chapter  Google Scholar 

  • Nedjah N, de Macedo Mourelle L (2005) Evolutionary synthesis of synchronous finite state machines. In: Nedjah N, de Macedo Mourelle L (eds) Evolvable machines: theory and practice. Springer, Berlin, pp 103–127

    Chapter  Google Scholar 

  • Nofli S, Floreano D (2000) Evolutionary robotics: the biology, intelligence, and technology of self-organizing machines. MIT Press/Bradford Books, Cambridge, MA

    Google Scholar 

  • Nosato H, Murakawa M, Kasai Y, Higuchi T (2006) Evolvable optical systems. In: Higuchi T, Liu Y, Yao X (eds) Evolvable Hardware. Springer, Heidelberg, pp 200–207

    Google Scholar 

  • Pecenka T, Sekanina L, Kotasek Z (2008) Evolution of synthetic RTL benchmark circuits with predefined testability. ACM Trans Des Autom Electron Syst 13(3):1–21

    Article  Google Scholar 

  • Sakanashi H, Iwata M, Higuchi T (2001) A lossless compression method for halftone images using evolvable hardware. In: Evolvable systems: from biology to hardware, 4th International conference, ICES 2001 Tokyo, Japan. LNCS, vol 2210. Springer, Berlin, pp 314–326

    Google Scholar 

  • Sakanashi H, Iwata M, Higuchi T (2006) EHW applied to image data compression. In: Higuchi T, Liu Y, Yao X (eds) Evolvable hardware. Springer, Berlin, pp 19–40

    Chapter  Google Scholar 

  • Salomon R, Widiger H, Tockhorn A (2006) Rapid evolution of time-efficient packet classifiers. In: IEEE congress on evolutionary computation, IEEE CIS, Vancouver, Canada, pp 2793–2799

    Google Scholar 

  • Sekanina L (2003) Virtual reconfigurable circuits for real-world applications of evolvable hardware. In: Evolvable systems: from biology to hardware, fifth international conference, ICES 2003. LNCS, vol 2606. Springer, Trondheim, Norway, pp 186–197

    Chapter  Google Scholar 

  • Sekanina L (2004) Evolvable components: from theory to hardware implementations. Natural Computing, Springer Verlag, Berlin

    MATH  Google Scholar 

  • Sekanina L (2007) Evolved computing devices and the implementation problem. Minds Mach 17(3):311–329

    Article  Google Scholar 

  • Sekanina L, Bidlo M (2005) Evolutionary design of arbitrarily large sorting networks using development. Genet Programming Evol Mach 6(3):319–347

    Article  Google Scholar 

  • Sekanina L, Friedl S (2004) An evolvable combinational unit for FPGAs. Comput Informatics 23(5):461–486

    MATH  Google Scholar 

  • Sekanina L, Ruzicka R, Vasicek Z, Prokop R, Fujcik L (2009) Repomo32 – new reconfigurable polymorphic integrated circuit for adaptive hardware. In: Proceedings of 2009 IEEE workshop on evolvable and adaptive hardware. IEEE CIS, Nashville, TN, pp 39–46

    Google Scholar 

  • Sekanina L, Starecek L, Kotasek Z, Gajda Z (2008) Polymorphic gates in design and test of digital circuits. Int J Unconventional Comput 4(2):125–142

    Google Scholar 

  • Stoica A, Keymeulen D, Zebulum RS, Guo X (2006) Reconfigurable electronics for extreme environments. In: Higuchi T, Liu Y, Yao X (eds) Evolvable hardware. Springer, Heidelberg, pp 145–160

    Chapter  Google Scholar 

  • Stoica A, Keymeulen D, Zebulum RS, Katkoori S, Fernando P, Sankaran H, Mojarradi M, Daud T (2008) Self-reconfigurable mixed-signal integrated circuits architecture comprising a field programmable analog array and a general purpose genetic algorithm IP core. In: Evolvable systems: from biology to hardware, 8th International conference, ICES 2008. LNCS, vol 5216. Springer, Prague, pp 225–236

    Google Scholar 

  • Stoica A, Wang X, Keymeulen D, Zebulum RS, Ferguson MI, Guo X (2005) Characterization and recovery of deep sub micron (DSM) technologies behavior under radiation. In: 2005 IEEE Aerospace Conference. IEEE, Montana, pp 1–9

    Google Scholar 

  • Stoica A, Zebulum R, Keymeulen D (2000) Mixtrinsic evolution. In: Proceedings of the 3rd International conference on evolvable systems: from biology to hardware ICES'00, Edinburgh, Scotland, UK, LNCS, vol 1801. Springer, pp 208–217

    Google Scholar 

  • Stoica A, Zebulum RS, Keymeulen D (2001) Polymorphic electronics. In: Proceedings of evolvable systems: from biology to hardware conference, LNCS, vol 2210. Springer, Tokyo, Japan, pp 291–302

    Chapter  Google Scholar 

  • Stoica A, Zebulum RS, Ferguson MI, Keymeulen D, Duong V (2002a) Evolving circuits in seconds: experiments with a stand-alone board-level evolvable system. In: Proceedings of the 2002 NASA/DoD conference on evolvable hardware (EH'02). IEEE Computer Society, Washington, DC, USA, pp 67–64

    Chapter  Google Scholar 

  • Stoica A, Zebulum RS, Keymeulen D, Lohn J (2002b) On polymorphic circuits and their design using evolutionary algorithms. In: Proceedings of IASTED international conference on applied informatics AI2002. Insbruck, Austria

    Google Scholar 

  • Stoica A, Zebulum R, Guo X, Keymeulen D, Ferguson I, Duong V (2004a) Taking evolutionary circuit design from experimentation to implementation: some useful techniques and a silicon demonstration. IEE Proc Comp Digit Technol 151(4):295–300

    Article  Google Scholar 

  • Stoica A, Zebulum RS, Keymeulen D, Ferguson MI, Duong V, Guo X (2004b) Evolvable hardware techniques for on-chip automated reconfiguration of programmable devices. Soft Comput 8(5):354–365

    Article  Google Scholar 

  • Stomeo E, Kalganova T, Lambert C (2006) Generalized disjunction decomposition for evolvable hardware. IEEE Trans Syst Man Cybern Part B 36(5):1024–1043

    Article  Google Scholar 

  • Takahashi E, Kasai Y, Murakawa M, Higuchi T (2006) Post-fabrication clock-timing adjustment using genetic algorithms. In: Higuchi T, Liu Y, Yao X (eds) Evolvable hardware, Springer, Heidelberg, pp 65–84

    Chapter  Google Scholar 

  • Tempesti G, Mange D, Mudry PA, Rossier J, Stauffer A (2007) Self-replicating hardware for reliability: The embryonics project. JETC 3(2):1–21

    Google Scholar 

  • Terrile R, Aghazarian H, Ferguson MI, Fink W, Huntsberger TL, Keymeulen D, Klimeck G, Kordon MA, Lee S, von Allmen P (2005) Evolutionary computation technologies for the automated design of space systems. In: 2005 NASA / DoD conference on evolvable hardware (EH 2005). IEEE Computer Society, Washington, DC, pp 131–138

    Chapter  Google Scholar 

  • Thompson A (1996) Silicon evolution. In: Proceedings of genetic programming GP'96. MIT Press, Cambridge, MA, pp 444–452

    Google Scholar 

  • Thompson A (1999) Hardware evolution: automatic design of electronic circuits in reconfigurable hardware by artificial evolution. Springer, London

    Google Scholar 

  • Thompson A, Layzell P, Zebulum S (1999) Explorations in design space: unconventional electronics design through artificial evolution. IEEE Trans Evolut Comput 3(3):167–196

    Article  Google Scholar 

  • Torresen J (1998) A divide-and-conquer approach to evolvable hardware. In: Proceedings of the 2nd International conference on evolvable systems: from biology to hardware ICES'98. LNCS, vol 1478. Springer, Lausanne, Switzerland, pp 57–65

    Google Scholar 

  • Torresen J (2002) A scalable approach to evolvable hardware. Genetic programming and evolvable machines 3(3):259–282

    Article  MATH  Google Scholar 

  • Tour JM (2003) Molecular electronics. World Scientific, Singapore

    Google Scholar 

  • Tufte G, Haddow P (2000) Evolving an adaptive digital filter. In: The second NASA/DoD workshop on evolvable hardware. IEEE Computer Society, Palo Alto, CA, pp 143–150

    Chapter  Google Scholar 

  • Tufte G, Haddow PC (2005) Towards development on a silicon-based cellular computing machine. Nat Comput 4(4):387–416

    Article  MathSciNet  MATH  Google Scholar 

  • Upegui A (2006) Dynamically reconfigurable bio-inspired hardware. Ph.D. thesis, EPFL

    Google Scholar 

  • Upegui A, Sanchez E (2006) Evolving hardware with self-reconfigurable connectivity in Xilinx FPGAs. In: The 1st NASA/ESA conference on adaptive hardware and systems (AHS-2006), IEEE Computer Society. Los Alamitos, CA, USA, pp 153–160

    Chapter  Google Scholar 

  • Vasicek Z, Sekanina L (2007a) An evolvable hardware system in Xilinx Virtex II Pro FPGA. Int J Innovative Comput Appl 1(1):63–73

    Article  Google Scholar 

  • Vasicek Z, Sekanina L (2007b) An area-efficient alternative to adaptive median filtering in FPGAs. In: Proceedings of 2007 conference on field programmable logic and applications. IEEE Computer Society, Los Alamitos, CA, pp 216–221

    Chapter  Google Scholar 

  • Vasicek Z, Sekanina L (2008) Hardware accelerators for Cartesian genetic programming. In: Proceedings of the 12th European conference on genetic programming, Naples, Italy. LNCS, vol 4971, pp 230–241

    Google Scholar 

  • Vasicek Z, Zadnik M, Sekanina L, Tobola J (2008) On evolutionary synthesis of linear transforms in FPGA. In: Proceedings of the 8th International conference on evolvable systems: from biology to hardware. LNCS, vol 5216. Springer Verlag, Berlin, pp 141–152

    Chapter  Google Scholar 

  • Vassilev V, Job D, Miller J (2000) Towards the automatic design of more efficient digital circuits. In: Lohn J, Stoica A, Keymeulen D, Colombano S (eds) Proceedings of the 2nd NASA/DoD workshop on evolvable hardware. IEEE Computer Society, Los Alamitos, CA, USA, pp 151–160

    Chapter  Google Scholar 

  • Voronenko Y, Püschel M (2007) Multiplierless multiple constant multiplication. ACM Trans Algorithms 3(2):1–282

    Article  Google Scholar 

  • Wade G, Roberts A, Williams G (1994) Multiplier-less FIR filter design using a genetic algorithm. IEE Proc Vis Image Signal Process 141(3):175–180

    Article  Google Scholar 

  • Walker JA, Miller J (2008) The automatic acquisition, evolution and re-use of modules in Cartesian genetic programming. IEEE Trans Evolut Comput 12(4):397–417

    Article  Google Scholar 

  • Xilinx Inc. (2009) URL: http://www.xilinx.com

  • Zebulum R, Keymeulen D, Ramesham R, Sekanina L, Mao J, Kumar N, Stoica A (2006) Characterization and synthesis of circuits at extreme low temperatures. In: Higuchi T, Liu Y, Yao X (eds) Evolvable hardware. Springer, Berlin, pp 161–172

    Chapter  Google Scholar 

  • Zebulum R, Pacheco M, Vellasco M (2002) Evolutionary electronics – automatic design of electronic circuits and systems by genetic algorithms. The CRC Press International Series on Computational Intelligence. Boca Raton, FL

    Google Scholar 

  • Zhan S, Miller JF, Tyrrell AM (2008) A developmental gene regulation network for constructing electronic circuits. In: Proceedings of the 8th international conference on evolvable systems: from biology to hardware. LNCS, vol 5216. Springer Verlag, Berlin, pp 177–188

    Google Scholar 

  • Zhang Y, Smith S, Tyrrell A (2004) Intrinsic evolvable hardware in digital filter design. In: Applications of Evolutionary Computing, Coimbra, Portugal. LNCS, vol 3005. Springer Verlag, pp 389–398

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Grant Agency of the Czech Republic under No. 102/07/0850 Design and hardware implementation of a patent-invention machine and the Research Plan No. MSM 0021630528 Security-Oriented Research in Information Technology.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Sekanina, L. (2012). Evolvable Hardware. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_50

Download citation

Publish with us

Policies and ethics