Skip to main content

Cellular Automata and Lattice Boltzmann Modeling of Physical Systems

  • Reference work entry
Handbook of Natural Computing

Abstract

Cellular automata (CA) and lattice Boltzmann (LB) methods provide a natural modeling framework to describe and study many physical systems composed of interacting components. The reason for this success is the close relation between these methods and a mesoscopic abstraction of many natural phenomena. The theoretical basis of the CA and LB approaches are introduced and their potential is illustrated for several applications in physics, biophysics, environmental sciences, traffic models, and multiscale modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander FJ, Chen H, Chen S, Doolen GD (Aug 1992) Lattice Boltzmann model for compressible fluids. Phys Rev A 46(4):1967–1970

    Article  Google Scholar 

  • Ansumali S, Karlin IV, Arcidiacono S, Abbas A, Prasianakis NI (2007) Hydrodynamics beyond Navier-Stokes: exact solution to the lattice Boltzmann hierarchy. Phys Rev Lett 98:124502

    Article  Google Scholar 

  • Banks E (1971) Information processing and transmission in cellular automata. Technical report, MIT. MAC TR-81

    Google Scholar 

  • Bhatnager P, Gross EP, Krook MK (1954) A model for collision process in gases. Phys Rev 94:511

    Article  Google Scholar 

  • Bouzidi M, Firdaouss M, Lallemand P (2001) Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys Fluids 13(11):3452–3459

    Article  Google Scholar 

  • Burks AW (1970) Von Neumann’s self-reproducing automata. In: Burks AW (ed) Essays on cellular automata, University of Illinois Press, Urbana, IL, pp 3–64

    Google Scholar 

  • Chen S, Doolen GD (1998) Lattice Boltzmann methods for fluid flows. Annu Rev Fluid Mech 30:329

    Article  MathSciNet  Google Scholar 

  • Chikatamarla SS, Ansumali S, Karlin IV (2006) Entropic lattice Boltzmann models for hydrodynamics in three dimensions. Phys Rev Lett 97:010201

    Article  MathSciNet  Google Scholar 

  • Chopard B, Droz M (1998) Cellular automata modeling of physical systems. Cambridge University Press, Cambridge, UK

    Book  MATH  Google Scholar 

  • Chopard B, Dupuis A (2003) Cellular automata simulations of traffic: a model for the city of Geneva. Netw Spatial Econ 3:9–21

    Article  Google Scholar 

  • Chopard B, Falcone J-L, Latt J (2009) The lattice Boltzmann advection-diffusion model revisited. Eur Phys J 171:245–249

    Google Scholar 

  • Chopard B, Luthi P, Droz M (1994) Reaction-diffusion cellular automata model for the formation of Liesegang patterns. Phys Rev Lett 72(9): 1384–1387

    Article  Google Scholar 

  • Chopard B, Luthi PO, Queloz P-A (1996) Cellular automata model of car traffic in two-dimensional street networks. J Phys A 29:2325–2336

    Article  MathSciNet  MATH  Google Scholar 

  • Chopard B, Luthi P, Masselot A, Dupuis A (2002) Cellular automata and lattice Boltzmann techniques: an approach to model and simulate complex systems. Adv Complex Syst 5(2):103–246. http://cui.unige.ch/∼chopard/FTP/CA/acs.pdf

  • Culick K, Yu S (1988) Undecidability of CA classification scheme. Complex Syst 2:177–190

    Google Scholar 

  • Deutsch A, Dormann S (2005) Cellular automaton modeling of biological pattern formation. Birkäuser, Boston, MA

    MATH  Google Scholar 

  • d'Humières D, Ginzburg I, Krafczyk M, Lallemand P, Luo L-S (2002) Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil Trans R Soc A 360:437–451

    Article  MATH  Google Scholar 

  • Evans D, Lawford P-V, Gunn J, Walker D, Hose D-R, Smallwood RH, Chopard B, Krafczyk M, Bernsdorf J, Hoekstra A (2008) The application of multi-scale modelling to the process of development and prevention of stenosis in a stented coronary artery. Phil Trans R Soc 366(1879):3343–3360

    Article  Google Scholar 

  • Frisch U, Hasslacher B, Pomeau Y (1986) Lattice-gas automata for the Navier-Stokes equation. Phys Rev Lett 56:1505

    Article  Google Scholar 

  • Galam S, Chopard B, Masselot A, Droz M (1998) Competing species dynamics: qualitative advantage versus geography. Eur Phys J B 4:529–531

    Article  Google Scholar 

  • Gardner M (1970) The fantastic combinations of John Conway’s new solitaire game “Life.” Sci Am 220(4):120

    Article  Google Scholar 

  • Gaylord RJ, Nishidate K (1996) Modeling nature with cellular automata using Mathematica. Springer, New York

    Google Scholar 

  • Ginzburg I (2005) Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv Water Resour 28(11):1171–1195

    Article  Google Scholar 

  • Guo Z, Zheng C, Shi B (2002a) Discrete lattice effects on forcing terms in the lattice Boltzmann method. Phys Rev E 65:046308

    Article  Google Scholar 

  • Guo Z, Zheng C, Shi B (2002b) An extrapolation method for boundary conditions in lattice Boltzmann method. Phys Fluids 14:2007–2010

    Article  Google Scholar 

  • He X, Luo L-S (1997) A priori derivation of the lattice Boltzmann equation. Phys Rev E 55:R6333–R6336

    Article  Google Scholar 

  • Hegewald J, Krafczyk M, Tölke J, Hoekstra A, Chopard B (2008) An agent-based coupling platform for complex automata. In: Bubak M et al (ed) ICCS 2008, vol LNCS 5102, Springer, Berlin, Germany, pp 291–300

    Google Scholar 

  • Hoeffer WJR (Oct 1985) The transmission-line matrix method. theory and applications. IEEE Trans Microw Theory Tech MTT-33(10):882–893

    Google Scholar 

  • Hoekstra A, Falcone J-L, Caiazzo A, Chopard B (2008a) Multi-scale modeling with cellular automata: the complex automata approach. In: Umeo H et al (ed) ACRI 2008, vol LNCS 5191, Springer, Berlin, Germany, pp 192–199

    Google Scholar 

  • Hoekstra A, Lorenz E, Falcone J-L, Chopard B (2008b) Towards a complex automata formalism for multiscale modeling. Int J Multiscale Comput Eng 5(6):491–502

    Article  Google Scholar 

  • Ilachinski A (2001) Cellular automata: a discrete universe. World Scientific, River Edge, NJ

    MATH  Google Scholar 

  • Inamuro T, Yoshino M, Ogino F (1995) A non-slip boundary condition for lattice Boltzmann simulations. Phys Fluids 7(12):2928–2930

    Article  MATH  Google Scholar 

  • Junk M, Klar A, Luo L-S (2005) Asymptotic analysis of the lattice Boltzmann equation. J Comput Phys 210(2)

    Google Scholar 

  • Kanai M, Nishinari K, Tokihiro T (2005) Stochastic optimal velocity model and its long-lived metastability. Phys Rev E 72:035102(R)

    Article  Google Scholar 

  • Kanai M, Nishinari K, Tokihiro T (2006) Stochastic cellular automaton model for traffic flow. In: El Yacoubi S, Chopard B, Bandini S (eds) Cellular automata: 7th ACRI conference, Perpignan, France, vol 4173. LNCS, Springer, pp 538–547

    Chapter  Google Scholar 

  • Kao P-H, Yang R-J (2008) An investigation into curved and moving boundary treatments in the lattice Boltzmann method. J Comput Phy 227(11):5671–5690

    Article  MathSciNet  MATH  Google Scholar 

  • Lallemand P, Luo L-S (2003) Lattice Boltzmann method for moving boundaries. J Comput Phys 184(2): 406–421

    Article  MathSciNet  MATH  Google Scholar 

  • Lätt J (2007) Hydrodynamic limit of lattice Boltzmann equations. Ph.D. thesis, University of Geneva, Switzerland. http://www.unige.ch/cyberdocuments/theses2007/LattJ/meta.html

  • Latt J, Chopard B (2006) Lattice Boltzmann method with regularized non-equilibrium distribution functions. Math Comp Sim 72:165–168

    Article  MathSciNet  MATH  Google Scholar 

  • Latt J, Chopard B, Malaspinas O, Deville M, Michler A (2008) Straight velocity boundaries in the lattice Boltzmann method. Phys Rev E 77:056703

    Article  Google Scholar 

  • Luthi PO, Preiss A, Ramsden J, Chopard B (1998) A cellular automaton model for neurogenesis in drosophila. Physica D 118:151–160

    Article  MATH  Google Scholar 

  • Marconi S, Chopard B (2003) A lattice Boltzmann model for a solid body. Int J Mod Phys B 17(1/2):153–156

    Article  Google Scholar 

  • Martis NS, Chen H (1996) Simulation of multicomponent fluids in complex 3D geometries by the lattice Boltzmann method. Phys Rev E 53:743–749

    Article  Google Scholar 

  • Nagel K, Herrmann HJ (1993) Deterministic models for traffic jams. Physica A 199:254

    Article  MATH  Google Scholar 

  • Nagel K, Schreckenberg M (1992) Cellular automaton model for freeway traffic. J Phys I (Paris) 2:2221

    Google Scholar 

  • Propp J (1994) Trajectory of generalized ants. Math Intell 16(1):37–42

    Article  MathSciNet  Google Scholar 

  • Rothman D, Zaleski S (1997) Lattice-gas cellular automata: simple models of complex hydrodynamics. Collection Aléa. Cambridge University Press, Cambridge, UK

    Book  MATH  Google Scholar 

  • Schreckenberg M, Schadschneider A, Nagel K, Ito N (1995) Discrete stochastic models for traffic flow. Phys Rev E 51:2939

    Article  Google Scholar 

  • Schreckenberg M, Wolf DE (ed) (1998) Traffic and granular flow ’97. Springer, Singapore

    Google Scholar 

  • Servan-Camas B, Tsai FTC (2008) Lattice Boltzmann method for two relaxation times for advection-diffusion equation:third order analysis and stability analysis. Adv Water Resour 31:1113–1126

    Article  Google Scholar 

  • Shan X, Yuan X-F, Chen H (2006) Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation. J Fluid Mech 550:413–441

    Article  MathSciNet  MATH  Google Scholar 

  • Sipper M (1997) Evolution of parallel cellular machines: the cellular programming approach. Springer, Berlin, Germany. Lecture notes in computer science, vol 1194

    Book  Google Scholar 

  • Stewart I (July 1994) The ultimate in anty-particle. Sci Am 270:88–91

    Google Scholar 

  • Succi S (2001) The lattice Boltzmann equation, for fluid dynamics and beyond. Oxford University Press, New York

    MATH  Google Scholar 

  • Suga S (2006) Numerical schemes obtained from lattice Boltzmann equations for advection diffusion equations. Int J Mod Phys C 17(11):1563–1577

    Article  MATH  Google Scholar 

  • Sukop MC, Thorne DT (2005) Lattice Boltzmann modeling: an introduction for geoscientists and engineers. Springer, Berlin, Germany

    Google Scholar 

  • Swift MR, Olrandini E, Osborn WR, Yeomans JM (1996) Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Phys Rev E 54:5041–5052

    Article  Google Scholar 

  • Toffoli T, Margolus N (1987) Cellular automata machines: a new environment for modeling. The MIT Press, Cambridge, MA

    Google Scholar 

  • Van der Sman RGM, Ernst MH (2000) Convection-diffusion lattice Boltzmann scheme for irregular lattices. J Comp Phys 160:766–782

    Article  MATH  Google Scholar 

  • Vanneste C, Sebbah P, Sornette D (1992) A wave automaton for time-dependent wave propagation in random media. Europhys Lett 17:715

    Article  Google Scholar 

  • Vichniac G (1984) Simulating physics with cellular automata. Physica D 10:96–115

    Article  MathSciNet  Google Scholar 

  • Weimar JR (1998) Simulation with cellular automata. Logos, Berlin, Germany

    Google Scholar 

  • Wolf-Gladrow DA (2000) Lattice-gas cellular automata and lattice Boltzmann models: an introduction. Lecture notes in mathematics, 1725. Springer, Berlin, Germany

    Book  MATH  Google Scholar 

  • Wolfram S (1986) Theory and application of cellular automata. World Scientific, Singapore

    Google Scholar 

  • Wolfram S (1994) Cellular automata and complexity. Addison-Wesley, Reading MA

    MATH  Google Scholar 

  • Wolfram S (2002) A new kind of science. Wolfram Sciences, New York

    MATH  Google Scholar 

  • Yu H, Zhao K (Apr 2000) Lattice Boltzmann method for compressible flows with high Mach numbers. Phys Rev E 61(4):3867–3870

    Article  Google Scholar 

  • Yukawa S, Kikuchi M, Tadaki S (1994) Dynamical phase transition in one-dimensional traffic flow model with blockage. J Phys Soc Jpn 63(10):3609–3618

    Article  Google Scholar 

  • Zou Q, He X (1997) On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys Fluids 7:2998

    MathSciNet  Google Scholar 

Download references

Acknowledgments

I thank Jonas Latt, Orestis Malaspinas, Andrea Parmigiani, and Chris Huber for stimulating discussions and for providing many of the figures illustrating Sect. 5.6.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Chopard, B. (2012). Cellular Automata and Lattice Boltzmann Modeling of Physical Systems. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_9

Download citation

Publish with us

Policies and ethics