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Abstract. We present a multi-scale approach for non-rigid image reg-
istration of tubular tree-like structures such as vessels. Therefore, we
consider a Gaussian and a combined morphological and Gaussian scale-
space. Similar to a multi-level framework, we solve a sequence of registra-
tion problems on several scale-space levels using a standard variational
approach for non-liner volumetric image registration. The overall idea is
to avoid locally ambiguous mappings between parts of the images by re-
moving morphological details but also finding a global optimal solution
by spreading remaining local information using Gaussian scaling. We
successfully tested our method on registration of 3D CT and ultrasound
images of hepatic vessels.

1 Introduction

Image registration of tubular tree-like structures is a very difficult task. Our
work is motivated by a project on Liver surgery. Here, image registration comes
into play for the alignment of 3D images of liver where the target structures
are vessels. Another example is the analysis of lungs where registration is used
for the alignment of the respiratory system. The particular difficulty for image
registration is that there are locally many ambiguous mappings between tree-like
structures which makes it hard to find a globally optimal alignment.

State-of-the-art approaches rely on intelligent pre-processing. Typically, in
a first step segmentation is used to extract vessels. Model-based approaches
then try to identify few bifurcation points that are used as landmarks [1, 2]
and/or to build a 3D model from the image data [3, 4, 5]. Other approaches use
volumetric image registration techniques focusing on edges in the image data.
However, all these approaches suffer from the local structure such that extensive
user-interaction by an expert is required typically by identifying corresponding
bifurcation points.

Our new approach uses ideas from scale-space. For the alignment of major
structures we spread local information in the images and construct a Gaussian
scale-space from the images and use it in a multi-level fashion. Furthermore, we
extent the Gaussian scale-space by a second morphological scale that builds on
the observation that anatomical tree-like structures become thinner as ramifica-
tion becomes finer.
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2 Material and methods

We use a standard variational approach for non-liner volumetric image regis-
tration [6]. Given two images R (reference) and T (template) we compute a
deformation y of the template by minimizing a suitable cost-function J given
by

J(R,T,y) := D(R,T(y)) + S(y)- (1)

Here, D measures the distance between the reference R and the deformed tem-
plate T'(y). The second building block S penalizes derivatives of the deformation
and thus forces smoothness. We assume the images have been preprocessed by
segmentation and therefore are binary images. Consequently, we choose the
sum-of-squared-difference (SSD) distance measure. We will not discuss a par-
ticular regularizer here. Suitable choices include diffusive, elastic, or curvature
regularization [6].

Instead of using the original images directly we construct a scale-space [7]
from the images by successively smoothing the image data and removing details.
Finally, we solve a sequence of registration problems. Starting on the coarsest
scale (least detailed images) we compute a deformation and use the result as
initial guess for the next finer scale.

We consider two strategies. First, we construct a Gaussian scale by smooth-
ing the original image data and creating an image pyramid for its use in a
multi-level framework. This procedure basically spreads local information. Sec-
ond, we extend the pure Gaussian scale by a morphological axis to eliminate
small vessels structures and thus to focus on the alignment of thick vessels. The
second approach is a generalization of the first one. Therefore, we only describe
the combined morphological and Gaussian approach in the following.

Addressing the problem of locally ambiguous mappings we introduce morpho-
logical scaling of the images. The leading idea is that major vessels are thicker
than peripheral ones. For that reason, we use a morphological opening with a
ball B, := {z : ||z|| < r} of radius r. For binary images R,T : R? — {0,1} we
set

R :=(ReB)®B, ad T :=(TohB)a5B, (2)

where (R © B,)(z) := 1if R = 1 on  + B, and 0 else denotes erosion and
(R® B,)(x) :=1if R# 0 on 2+ B, and 0 else is dilation. As a result, for 7 = 0

Morphological Scale

Fig. 1. Morphological scale-space of a 3D vessel system (increasing r left to right)
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we have R? = R, TV = T and for increasing scale-space parameter r we remove
details from the images. An example is given in Figure 1.

Besides ambiguous mappings another problem is that structural information
is very local, i.e., corresponding vessels do not initially overlap which makes
registration difficult. To this end, we additionally use a Gaussian scale-space.
We define

R =R xK, and T"7:=T " xK,
where K, (z) = (2r0?)~% exp(—%) is a Gaussian with standard deviation o.
Consequently, R™” — R", T"? — T" as ¢ — 0 and with increasing ¢ more
and more local information is dispersed. A 2D example for simulated data with
combined morphological and Gaussian scale-space is shown in Figure 2.

Summarizing, we solve a sequence of registration problems for scale-space
parameters (r1,01),...,(ry,on) withr; > ... >ry =0and oy > ... > oy =0.
Note that choosing 1 = ... =rxy = 0 results a pure Gaussian scale space.

For our numerical method we first discretize the objective function (1) and
use a Gauss-Newton optimization method.
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Fig. 2. 2D combined morphological and Gaussian scale
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Table 1. SSD relative to pre-registered data after non-rigid registration on the finest-
level, using the Gaussian scale-space, and using the combined morphological and Gaus-
sian scale-space.

Strategy Case 1 Case 2 Case 3 Case 4 Case b Case 6
Original 63.95% 36.27% 43.90% 52.71% 17.16% 34.75%
Gaussian 20.59% 23.46% 22.70% 27.52% 9.21% 24.15%

Morph.+Gauss. 19.45% 23.17% 23.49% 26.59% 8.31% 21.25%

3 Results

We tested our method on the registration of hepatic vessels obtained from 3D
CT and ultrasound. We totally considered 6 cases. The size of the images was
between 1282 and 2563 voxels and for each image we constructed 4 morphological
and 4 Gaussian scales. The morphological scales were constructed by opening the
images with balls of diameters = 1,5,11, 15 voxels. For the Gaussian scales
we used discrete convolution kernels based on the 1D stencil [0.25 0.5 0.25].
Higher order smoothing was achieved by repeated convolution. Therefore, here
the smoothing parameter o is a discrete number that denotes the number of
subsequent convolutions. For our tests we generated 4 scales for 0 = 0,4, 8, 16.

We compared three different registration strategies. First, we used plain
non-rigid registration on the finest level for (r,o) = (1,0). Second, we used the
Gaussian scale-space and performed 4 registrations by choosing (r, o) as (1, 16),
(1,8), (1,4), and (1,0). The third strategy uses both, the morphological and
Gaussian scale. Here, we chose the sequence of (r,o) as (15,16), (15,8), (11,8),
(11’4)7 (534)7 (57O)a and (17 0)

Furthermore, for each strategy we performed rigid pre-registration.

The results are summarized in Table 1 and a visual comparison for the 4th
case is shown in Figure 3.

We found that both scale-space approaches produced good results and signifi-
cantly outperformed only registration on the finest scale. Thereby, the combined
morphological and Gaussian strategy produced the best results.

4 Discussion

We have presented a scale-space approach for the registration of tubular tree-like
structures such as vessels. The key-feature is a combined two-dimensional mor-
phological and Gaussian scale-space. The morphological axis allows for scaling
the structural level and the Gaussian axis spreads local information to find a
globally optimal deformation.

We tested our approach on real data and compared non-rigid registration of
the initial images, using a pure Gaussian scale-space, and the combined two-
dimensional scale-space. Our experiments showed that the registration signifi-
cantly benefits from using scale-spaces. Although, the results of the combined
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Fig. 3. Registration results for Case 4 (reference bright, template dark)

Rigid Pre-Registration Non-Rigid

Gaussian Morphological+Gaussian

framework are best, to our surprise they are comparable to the pure Gaussian
approach which needs further investigation in the future.

A practical benefit is that the method is easy to implement and due to the

used scale-spaces it is robust with respect to noise and lack of data.

Summarizing, we conclude that using scale-spaces ideas is inevitable for suc-

cessful registration of vessel structures.
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