Skip to main content

Tumor Extraction From Multimodal MRI

  • Chapter
Computer Recognition Systems 3

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 57))

Summary

Manual segmentation of brain tumor from 3D multimodal magnetic resonance images (MRI) is time-consuming task and leading to human errors. In this paper, two automated approaches has been developed for brain tumor segmentation to discuss which one will provide accurate segmentation that is close to the manual results. The MR feature images used for the segmentation consist of three weighted images (enhanced T1, proton density(PD) and T2) for each axial slice through the head. The first approach is based on multi-features Fuzzy-c-means (FCM) algorithm followed by a post-processing step based on prior knowledge to refine the tumor region. The second approach is three-pass step. First, each single modality MRI is classified separately with FCM algorithm. Second, classified images are fused by Dempster-Shafer evidence theory to get the final brain tissue labeling. Finally, prior knowledge are used to refine the tumor region. For validation, ten tumor cases of different size, shape and location in the brain are used with a total of 200 multimodals MRI.The brain tumor segmentation results are compared against manual segmentation carried out by two independent medical experts and used as the ground truth. Our experimental results suggest that the second approach produces results with comparable accuracy to those of the manual tracing compared to the first approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Iftekharuddin, K.M.: On techniques in fractal analysis and their applications in brian MRI. In: Cornelius, T.L. (ed.) Medical imaging systems: technology and applications, Analysis and Computational Methods, vol. 1, pp. 993–999. World Scientific Publications, Singapore (2005)

    Google Scholar 

  2. Liu, J., Udupa, J.K., Odhner, D., Hackney, D., Moonis, G.: A system for brain tumor volume estimation via MR imaging and fuzzy connectedness. Comput. Med. Imaging Graph., 21–34 (2005)

    Google Scholar 

  3. Mazzara, G.P., Velthuizen, R.P., Pearlman, J.L., Greenberg, H.M., Wagner, H.: Brain tumor target volume determination for radiation treatment planning through automated MRI segmentation. Int. J. Radiat. Oncol. Biol. Phys., 300–312 (2004)

    Google Scholar 

  4. Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A brain tumor segmentation framework based on outlier detection. Med. Image Anal., 275–283 (2004)

    Google Scholar 

  5. Mahmoud-Ghoneim, D., Toussint, G., Constans, J., Certains, J.-D.d.: Three dimensional texture analysis in MRI: a preliminary evaluation in gliomas. Magn. Reson. Imaging., 983–987 (2003)

    Google Scholar 

  6. Runkler, T.A., Bezdek, J.C.: Alternating cluster estimation: a new tool for clustering and function approximation. IEEE Trans. Fuzzy Syst., 377–393 (1999)

    Google Scholar 

  7. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  8. Smets, P., Kennes, R.: The Transferable Belief Model. Artif. Intell., 191–243 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wafa, M., Zagrouba, E. (2009). Tumor Extraction From Multimodal MRI. In: Kurzynski, M., Wozniak, M. (eds) Computer Recognition Systems 3. Advances in Intelligent and Soft Computing, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93905-4_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-93905-4_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-93904-7

  • Online ISBN: 978-3-540-93905-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics