
Universität Augsburg

KABCROMUNGSHO0

Time and Fairness in a Process Algebra

with Non-Blocking Reading

F. Corradini, M.R. Di Berardini,

W. Vogler

Report 2008-13 July 2008

Institut für Informatik
D-86135 Augsburg

Copyright c© F. Corradini, M.R. Di Berardini,
W. Vogler

Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Time and Fairness in a Process Algebra with Non-Blocking Reading

F. Corradini, M.R. Di Berardini
Dipartimento di Matematica e Informatica

Università di Camerino
{flavio.corradini,mariarita.diberardini}@unicam.it

W. Vogler
Institut für Informatik
Universität Augsburg

vogler@informatik.uni-augsburg.de

July 23, 2008

Abstract

We introduce the first process algebra with non-blocking reading actions for modelling con-
current asynchronous systems, and we do it in two different ways: one is more flexible, the other
is simpler since it needs only one type of transitions. We study the impact this new kind of
actions have on fairness, liveness and the timing of systems, using Dekker’s mutual exclusion
algorithm we already considered in [4] as running example. Regarding some actions as reading,
this algorithm satisfies MUTEX liveness already under the assumption of fairness of actions.
We demonstrate an interesting correspondence between liveness and the catastrophic cycles that
we introduced in [7] when studying the performance of pipelining. Finally, our previous result
on the correspondence between timing and fairness [4] scales up to the extended language.

1 Introduction

Read arcs are an extension of classical Petri nets to model non-destructive reading operations;
they allow multiple concurrent reading of the same resource, a quite frequent situation in many
distributed systems. Read-arcs represent positive context conditions, i.e. elements which are needed
for an event to occur, but are not affected by it. As argued in [15], the importance of such elements
is twofold. Firstly, they allow a faithful representation of systems where the notion of “reading
without consuming” is commonly used, like database systems, concurrent constraint programming,
or any computation framework based on shared memory. Secondly, they allow to specify directly
and naturally a level of concurrency greater than in classical nets: two transitions reading the
same place may occur in any order and also simultaneously; in classical nets, the transitions would
be connected to the place by loops such that they cannot occur simultaneously. Read arcs have
been used to model a variety of applications such as transaction serialisability in databases [18],
concurrent constraint programming [16], asynchronous systems [19], and cryptographic protocols
[11].

Semantics and expressivity of read arcs have been studied e.g. in the following: [2] discusses a
step semantics. [1] discusses the expressiveness of timed Petri nets and timed automata and shows
that timed Petri nets with read-arcs unify timed Petri nets and timed automata. Finally, [19] shows
that read arcs add relevant expressivity; the MUTEX problem can be solved with nets having read
arcs but not with ordinary nets having no read arcs.

In this paper, we introduce the first process algebra with non-blocking reading; we add reading
in the form of a read-action prefix to PAFAS [3], a process algebra for modelling timed concur-
rent asynchronous systems. We present two different ways to enhance our process algebra with
such non-blocking actions: one is more flexible, the other is simpler since it needs only one type
of transition relation; we provide a translation of the latter into the former in Section 4. Non-
blocking actions have a direct impact on the timed behaviour of systems. To show this with a

1

simple example, consider a system composed of two processes that need to read the same vari-
able to prepare an output they produce together. Such a system can be described in PAFAS as
(r.o.nil ‖{o} r.o.nil) ‖{r,w} rec x. (r.x + w.x), where r.o.nil ‖{o} r.o.nil models the two processes that
read from the same variable and produce the output o together, while rec x. (r.x+w.x) models the
variable that can repeatedly be read with r or written with w. According to the PAFAS semantics,
enabled actions are performed immediately or become urgent after one time unit and must occur
then; thus, after at most one time unit, the first r occurs. With the given model of the variable,
every time an action r is performed, a new instance of r is generated that can let one time unit
pass; thus, a second time unit might pass before the second r, and the output is produced within
three time units in the worst-case. If the read action r were modelled as a non-blocking action,
written rec x. r . w.x, then the worst-case efficiency for producing the output would be two time
units. In this case, after one time unit and the occurrence of the first r, the variable offers the
same non-blocking action r such that the second r is still urgent and has to be performed before
the second time step.

In previous work, we have shown that our notion of time [8] is strongly related to (weak) fairness,
which requires that an action has to be performed, a component has to act resp., whenever it is
enabled continuously in a run. We have proven that each everlasting (or non-Zeno) timed process
execution is fair and vice versa, where fairness is defined in an intuitive but complicated way in
the spirit of [10, 9]. In fact, we have shown this correspondence for fairness of actions [4] and with
a modified notion of timing for fairness of components [5]. We used these characterisations in [6]
to study the liveness property for Dekker’s mutual exclusion algorithm, and proved that Dekker is
live under the assumption of fairness of components but not under the assumption of fairness of
actions.

Here, we show that non-blocking actions preserve the above correspondence result between
fairness of actions and timing. Another main result is that, in the new setting, Dekker’s algorithm
is live when assuming fairness of actions, provided we regard as non-blocking the reading of a
variable (as r in rec x. (r.x + w.x) above) as well as its writing in the case that the written value
equals the current value. This kind of re-write does not change the state of the variable and, hence,
can be thought of as a non-destructive or non-consuming operation (allowing potential concurrent
behaviour). This way of accessing a variable is not new; in Remark 1.1 below, we describe how it
is implemented in the area of databases.

Finally, we develop an interesting connection between liveness of MUTEX algorithms and catas-
trophic cycles: we considered the latter in [7] studying the very different problem of asymptotic
performance for the specific, but often occurring class of request-response processes (having only
actions in and out). A cycle in a transition system is catastrophic if it only contains time steps
and internal actions, and we showed that a process can refuse to serve some request within finite
time if and only if a reduced transition system of the process contains a catastrophic cycle. We
also pointed out that the existence of catastrophic cycles in a reduced transition system can be
determined in polynomial time. In the present paper, we show how to modify the process Dekker
such that Dekker satisfies liveness under the assumption of fairness of actions if and only if the
modified process does not have a catastrophic cycle. This opens the way to check automatically
the liveness property for MUTEX algorithms.

Remark 1.1 Our idea of re-write has been implemented with the so-called two-phase locking
protocol, that is used for preventing transaction conflicts (i.e. two transactions working on the same
data item with at least one of them writing). Such a protocol implements a lock system where each
transaction may only access a data item if it holds a lock on that item. There are two possible
modes of locks: shared and exclusive. If a transaction T holds a shared mode lock (an S-lock, for
short) on data item q, then T may read – but not write – q. On the other hand, a transaction with
an exclusive mode lock (an X-lock) on q can both read and write it. Multiple S-locks are allowed on

2

a single data item, but only one X-lock can be acquired for it. This allows multiple reads (which
do not create serialisability conflicts) as in our modelling of variables, but writing prevents reading
or another writing interaction (which would create conflicts).

In the two-phase locking protocol, a transaction can acquire new locks only during the so-called
growing phase. All the locks acquired in the growing phase can be released only during a subsequent
phase, called shrinking phase. Furthermore, an S-lock can be upgraded to X during the growing
phase and, similarly, an X-lock can be downgraded to S during the shrinking phase. The idea here
is that – during the growing phase – a transaction, instead of holding an X-lock on an item that it
does not need to write yet, can hold an S-lock until the point where modifications to the old value
begin, in order to allow other transactions to read the old value for longer. This can be used for a
“reading first” implementation of writing: each write operation first reads the old value (this read
requires an S-lock for the variable and can be done concurrently with other read operations) and
then only writes a new one if it is really different (in this latter case, the S-lock has to be upgraded
to an X-lock). This way, a re-writing of the same value is indeed non-blocking.

The rest of the paper is organised as follows. The next section introduces PAFAS with read-
prefixes, and its functional and temporal operational semantics. Section 3 presents an alternative
way of introducing non-blocking actions in process algebras. Section 4 contrasts our two alternative
approaches of introducing non-blocking actions in process algebras. Section 5 introduces fairness,
while Section 6 relates it to timing. Finally, Section 8 investigates the liveness of Dekker’s algorithm
under the assumption of fairness of actions and presents the interesting connection between liveness
and catastrophic cycles.

2 A process algebra for describing read behaviours

In this section we introduce a new process description language – called PAFASr – suitable to
model non-blocking reading in concurrent asynchronous systems, a feature with an impact on fair
and on timed behaviour as already discussed in [19] in a Petri net setting. PAFASr is an extension
of the timed process algebra PAFAS, introduced in [8] for evaluating the worst-case efficiency of
asynchronous systems and used in [4, 5] for studying fairness of actions and components in system
computations.

PAFAS is a CCS-like process description language [14] (with a TCSP-like parallel composition),
where basic actions are atomic and instantaneous but have associated an upper time bound (either
0 or 1, for simplicity) interpreted as a maximal time delay for their execution. As explained in [8],
these upper time bounds can be used for evaluating the performance of asynchronous systems, but
do not influence functionality (which actions are performed); so compared to CCS, also PAFAS
treats the full functionality of asynchronous systems. With respect to the original language in [8],
here we introduce the new operator . to represent non-blocking behaviour of processes. Intuitively,
the term α . P models a process like a variable or a more complex data structure that behaves
as P but can additionally be read with α: since being read does not change the state, α can be
performed repeatedly until the execution of some ordinary action of P , and it does not block a
synchronisation partner as described below.

We use the following notation. A is an infinite set of basic actions. An additional action τ is used
to represent internal activity, which is unobservable for other components. We define Aτ = A∪{τ}.
Elements of A are denoted by a, b, c, . . . and those of Aτ are denoted by α, β, Actions in Aτ can
let time 1 pass before their execution, i.e. 1 is their maximal delay. After that time, they become
urgent actions written a or τ ; these have maximal delay 0. The set of urgent actions is denoted by
Aτ = {a | a ∈ A} ∪ {τ} and is ranged over by α, β, Elements of Aτ ∪ Aτ are ranged over by µ.

X is the set of process variables, used for recursive definitions. Elements of X are denoted by
x, y, z, . . . Φ : Aτ → Aτ is a general relabelling function if the set {α ∈ Aτ | ∅ 6= Φ−1(α) 6= {α}} is

3

finite and Φ(τ) = τ . Such a function can also be used to define hiding: P/A, where the actions in A
are made internal, is the same as P [ΦA], where the relabeling function ΦA is defined by ΦA(α) = τ
if α ∈ A and ΦA(α) = α if α /∈ A. We assume that time elapses in a discrete way1. Thus, an action
prefixed process a.P can either do action a and become process P (as usual in CCS) or can let one
time step pass and become a.P ; a is called urgent a, and a.P as a stand-alone process cannot let
time pass, but can only do a to become P .

In the following definition, initial processes are just processes of a standard process algebra
extended with .. General processes are defined here such that they include all processes reachable
from the initial ones according to the operational semantics to be defined below.

Definition 2.1 (timed process terms) The set P̃1 of initial (timed) process terms is generated by
the following grammar

P ::= nil
∣∣ x

∣∣ α.P
∣∣ α . P

∣∣ P + P
∣∣ P ‖A P

∣∣ P [Φ]
∣∣ rec x.P

where nil is a constant, x ∈ X , α ∈ Aτ , Φ is a general relabelling function and A ⊆ A possibly
infinite. We assume that recursion is action-guarded (see below). The set P̃ of (general) (timed)
process terms is generated by the following grammar:

Q ::= P
∣∣ α.P

∣∣ µ . Q
∣∣ Q + Q

∣∣ Q ‖A Q
∣∣ Q[Φ]

∣∣ rec x.Q

where P ∈ P̃1, x ∈ X , α ∈ Aτ , µ ∈ Aτ ∪ Aτ ; again Φ is a general relabelling function and
A ⊆ A possibly infinite. We assume that recursion is action-guarded, i.e. for recx.Q variable x only
appears in Q within the scope of a prefix µ.() with µ ∈ Aτ ∪ Aτ . A term Q is action-guarded if
each occurrence of a variable is guarded in this sense. A process term is closed if every variable x
is bound by the corresponding rec x-operator; the set of closed timed process terms in P̃ and P̃1,
simply called processes and initial processes resp., is denoted by P and P1 resp.

A brief description of the (PAFASr) operators now follows. The nil-process cannot perform
any action, but may let time pass without limit. A trailing nil will often be omitted, so e.g.
a.b + c abbreviates a.b.nil + c.nil. µ.Q is (action-)prefixing known from CCS. Terms like α . Q and
α.Q model processes that behave like Q except for the (lazy and urgent, respectively) non-blocking
action α. In both cases the action α is always enabled until component Q evolves via some ordinary
action, and if urgent, α stays urgent even if it is performed. Q1 +Q2 models the choice between two
conflicting processes Q1 and Q2. Q1‖AQ2 is the parallel composition of two processes Q1 and Q2

that run in parallel and have to synchronise on all actions from A; this synchronisation discipline
is inspired from TCSP. Q[Φ] behaves as Q but with the actions changed according to Φ. rec x.Q
models a recursive definition; we also use equations to define recursive processes.

For our operational semantics we need some preliminary definitions. Given a process term Q,
U(Q,A) denotes the set of the urgent actions of Q when the environment prevents the actions in
A. For technical convenience, we allow A to be a subset of Aτ .

Definition 2.2 (urgent basic actions) Let Q ∈ P̃ and A ⊆ Aτ . The set U(Q,A) is defined by
induction on Q. The urgent actions of Q are defined as U(Q, ∅) which we abbreviate to U(Q).

Nil, Var: U(nil, A) = U(x,A) = ∅

Pref: U(µ.P, A) =

{
{α} if µ = α and α /∈ A

∅ otherwise

1PAFAS is not time domain dependent, meaning that the choice of discrete or continuous time makes no difference
for the testing-based semantics of asynchronous systems, see [8] for more details.

4

Read: U(µ . Q, A) =

{
{α} ∪ U(Q,A) if µ = α and α /∈ A

U(Q,A) otherwise

Sum: U(Q1 + Q2, A) = U(Q1, A) ∪ U(Q2, A)

Par: U(Q1 ‖B Q2, A) =
⋃

i=1,2 U(Qi, A ∪B) ∪ (U(Q1, A) ∩ U(Q2, A) ∩B)

Rel: U(Q[Φ], A) = Φ(U(Q,Φ−1(A)))

Rec: U(rec x.Q,A) = U(Q,A)

The set A represents the actions restricted upon. Thus, U(µ.P, A) = {α} only if µ = α
and α /∈ A; otherwise U(µ.P, A) = ∅; observe that an initial process P cannot have any urgent
actions. The urgent actions of a nondeterministic process are the urgent actions of its alternative
components. The essential idea for parallel composition is that a synchronised action can be delayed
if at least one component can delay it: U(Q1 ‖B Q2, A) includes the actions that are urgent in Q1

or Q2 when the actions in A and in B (the synchronising ones) are prevented, and the actions in
B, but not in A, that are urgent both in Q1 and in Q2. The other rules are as expected. Observe
that U(Q,A) = U(Q)\A.

The operational semantics exploits two functions on process terms: clean() and unmark().
Function clean() removes all inactive urgencies in a process term Q ∈ P̃; when a process evolves
and a synchronised action is no longer urgent or enabled in some synchronisation partner, then it
should also lose its urgency in the others; the corresponding change of markings is performed by
clean, where again set A in clean(Q,A) denotes the set of actions that are not enabled or urgent
due to restrictions of the environment. Function unmark() simply removes all urgencies (inactive
or not) in a process term Q ∈ P̃.

Definition 2.3 (cleaning inactive urgencies) For any Q ∈ P̃ we define clean(Q) as clean(Q, ∅)
where, for A ⊆ A, clean(Q,A) is defined below.

Nil, Var: clean(nil, A) = nil, clean(x,A) = x

Pref: clean(µ.P, A) =

{
α.P if µ = α and α ∈ A

µ.P otherwise

Read: clean(µ . Q,A) =

{
α . clean(Q,A) if µ = α and α ∈ A

µ . clean(Q,A) otherwise

Sum: clean(Q1 + Q2, A) = clean(Q1, A) + clean(Q2, A)

Par: clean(Q1 ‖B Q2, A) = clean(Q1, (B\U(Q2)) ∪A) ‖B clean(Q2, (B\U(Q1)) ∪A)

Rel: clean(Q[Φ], A) = clean(Q,Φ−1(A))[Φ]

Rec: clean(rec x.Q,A) = rec x. clean(Q,A)

We say that a given Q ∈ P̃ is clean if Q = clean(Q). Since, obviously, for any P ∈ P̃1 it is
P = clean(P), we have that all initial terms are clean.

5

Definition 2.4 (cleaning all urgencies)
Let Q be a P̃ term. Then unmark(Q) is defined by induction on Q as follows:

Nil, Var: unmark(nil) = nil, unmark(x) = x

Pref: unmark(α.P) = unmark(α.P) = α.P

Read: unmark(α . Q) = unmark(α . Q) = α . unmark(Q)

Sum: unmark(Q1 + Q2) = unmark(Q1) + unmark(Q2)

Par: unmark(Q1 ‖A Q2) = unmark(Q1) ‖A unmark(Q2)

Rel: unmark(Q[Φ]) = unmark(Q)[Φ]

Rec: unmark(rec x.Q) = rec x. unmark(Q)

2.1 The functional behaviour of PAFASr processes

The transitional semantics describing the functional behaviour of PAFASr processes indicates which
basic actions they can perform. We distinguish two different transition relations α7→ and αÃ to
describe, resp., the ordinary and the reading behaviour of PAFASr processes. The functional
behaviour is defined as the union of these two kinds of behaviour.

Definition 2.5 (Functional operational semantics) Let Q ∈ P̃ and α ∈ Aτ . We say that Q
α−→ Q′

if Q
α7→ Q′ or Q

αÃ Q′, where the SOS-rules defining the transition relations α7→⊆ (P̃ × P̃) (the
ordinary action transitions) and αÃ⊆ (P̃× P̃) (the read action transitions) for α ∈ Aτ , are given in
Tables 1 and 2, respectively. As usual, we write Q

α−→ Q′ if (Q, Q′) ∈ α−→ and Q
α−→ if there exists a

Q′ ∈ P̃ such that (Q,Q′) ∈ α−→, and similar conventions will apply later on.

Prefo

µ ∈ {α, α}
µ.P

α7→ P
Reado

Q
α7→ Q′

µ . Q
α7→ Q′

Sumo

Q1
α7→ Q′

Q1 + Q2
α7→ Q′

Paro1

α /∈ A, Q1
α7→ Q′

1

Q1‖AQ2
α7→ clean(Q′

1‖AQ2)
Paro2

α ∈ A, Q1
α7→ Q′

1, Q2
α−→ Q′

2

Q1‖AQ2
α7→ clean(Q′

1‖AQ′
2)

Relo

Q
α7→ Q′

Q[Φ]
Φ(α)7→ Q′[Φ]

Reco

Q{rec x.unmark(Q)/x} α7→ Q′

rec x.Q
α7→ Q′

Table 1: Ordinary behaviour of PAFASr processes

Rules in Table 1 are quite standard (apart from using clean in the Par-rules). Rule Prefo

describes the behaviour of an action-prefixed process as usual in CCS. Notice that timing can be
disregarded: when an action is performed, one cannot see whether it was urgent or not, and thus
α.P

α7→ P ; furthermore, component α.P has to act within time 1, i.e. it can also act immediately,
giving α.P

α7→ P . Rule Reado says that µ . Q performs the same ordinary actions as Q removing
the read-prefix at the same time. The use of the unmark in rule Reco has no effects for an initial
process, where Reco is the standard SOS rule. For non-initial Q we will explain this rule in
Example 2.8. We use the clean function as explained before its definition. Observe that in rule

6

Paro2 , an ordinary action transition can synchronise with both an ordinary and a read action
transition. The other rules are as expected. Furthermore, symmetric rules have been omitted.

Readr1

µ ∈ {α, α}
µ . Q

αÃ µ . Q
Readr2

Q
αÃ Q′

µ . Q
αÃ µ . Q′

Sumr

Q1
αÃ Q′

1

Q1 + Q2
αÃ Q′

1 + Q2

Parr1

α /∈ A, Q1
αÃ Q′

1

Q1‖AQ2
αÃ Q′

1‖AQ2

Parr2

α ∈ A, Q1
αÃ Q′

1, Q2
αÃ Q′

2

Q1‖AQ2
αÃ Q′

1‖AQ′
2

Relr

Q
αÃ Q′

Q[Φ]
Φ(α)Ã Q′[Φ]

Recr

Q
αÃ Q′

rec x.Q
αÃ rec x.Q′

Table 2: Reading Behaviour of PAFASr processes

As expected, rules in Table 2 say that the execution of reading actions does not change the
state of a term Q (i.e. for any Q ∈ P̃, Q

αÃ Q′ implies Q = Q′—this is an easy induction proof).
Again, symmetric rules are omitted.

Most important is Rule Readr2 . This is needed in the case of nested reading actions, and it is
here that we need to distinguish read from ordinary action transitions. As an example, consider an
array with two Boolean values; if the values are t and f , the behaviour of the array can be defined
as Btf = r0t . r1f .

∑
i∈{t,f} (w0i.Bif + w1i.Bti). By r0t, we mean the action of reading the value t

from entry 0 and similarly for the action r1f ; furthermore the action wji writes value i into entry j.

Now Btf
r1fÃ Btf by Rules Readr1 and Readr2, allowing this non-blocking action to be repeated

indefinitely. At this stage, only the execution of an ordinary action can change the current state of
the array. Indeed, by Rule Reado, Btf

w1t7→ Btt.

Definition 2.6 (activated basic actions) The set of activated (or enabled) actions of Q ∈ P̃ is
defined as A(Q) = {α | Q

α−→}. The set of activated actions of Q when the environment prevents
the actions in A ⊆ Aτ is defined as A(Q,A) = A(Q)\A.

2.2 The temporal behaviour of PAFASr processes

We are now ready to define the refusal traces of a term Q ∈ P̃. Intuitively a refusal trace records,
along a computation, which actions process Q can perform (Q α−→ Q′, α ∈ Aτ) and which actions
Q can refuse to perform when time elapses (Q X−→r Q′, X ⊆ A).

A transition like Q
X−→r Q′ is called a (partial) time-step. The actions listed in X are not urgent;

hence Q is justified in not performing them, but performing a time step instead. This time step
is partial because it can occur only in contexts that can refuse the actions not in X. If X = A
then Q is fully justified in performing this time-step; i.e., Q can perform it independently of the
environment. If Q

A−→r Q′, we write Q
1−→ Q′; we say that Q performs a full time-step and often

write Q for Q′. In [8], it is shown that inclusion of refusal traces characterises an efficiency preorder
which is intuitively justified by a testing scenario. In the present paper, we need partial time steps
only to set up the following SOS-semantics; our real interest is in runs where all time steps are full.
We let λ range over Aτ ∪ {1}.

Definition 2.7 (refusal transitional semantics) The inference rules in Table 3 define X−→r⊆ P̃× P̃
where X ⊆ A.

7

Nilt

nil
X−→r nil

Preft1

α.P
X−→r α.P

Preft2

α /∈ X ∪ {τ}
α.P

X−→r α.P

Readt1

Q
X−→r Q′

α . Q
X−→r α . Q′

Readt2

Q
X−→r Q′, α /∈ X ∪ {τ}
α . Q

X−→r α . Q′

Sumt

Qi
X−→r Q′

i for i = 1, 2

Q1 + Q2
X−→r Q′

1 + Q′
2

Relt

Q
Φ−1(X∪{τ})\{τ}−−−−−−−−−−−→r Q′

Q[Φ] X−→r Q′[Φ]
Rect

Q
X−→r Q′

rec x.Q
X−→r rec x.Q′

Part

Qi
Xi−→r Q′

i for i = 1, 2, X ⊆ (A ∩ (X1 ∪X2)) ∪ ((X1 ∩X2)\A)

Q1‖AQ2
X−→r clean(Q′

1‖AQ′
2)

Table 3: Refusal transitional semantics of PAFASr processes

Rule Preft1 says that a process α.P can let time pass and refuse to perform any action while rule
Preft2 says that a process α.P can let time pass but cannot refuse the action α. Process τ .P
cannot let time pass and cannot refuse any action; in any context, τ .P has to perform τ before
time can pass further. Rule Part defines which actions a parallel composition can refuse during a
time-step. The intuition is that Q1‖AQ2 can refuse an action α if either α /∈ A (Q1 and Q2 can do
α independently) and both Q1 and Q2 can refuse α, or α ∈ A (Q1 and Q2 are forced to synchronise
on α) and at least one of Q1 and Q2 can refuse α, i.e. can delay it. Thus, an action in a parallel
composition is urgent (cannot be further delayed) only when all synchronising ‘local’ actions are
urgent (also in this case we unmark the inactive urgencies). The other rules are as expected.

Example 2.8 As an example for the definitions given so far, consider P = (R ‖∅ W) ‖{r,w} V ,
where V = rec x.(r.x + w.x), R = rec x. r.x and W = rec x.w.x model a variable (with values
abstracted away), and the activities of repeatedly reading and writing such a variable, respectively.
According to our operational semantics, V

1−→ V = rec x. (r.x + w.x) r7→ V (each occurrence of x is
replaced by V before the second transition by using unmark); hence Reco meets the usual intuition.
Furthermore:

P
1−→ (R ‖∅ W) ‖{r,w} V = ((rec x. r.x) ‖∅ (rec x. w.x)) ‖{r,w} rec x. (r.x + w.x) r7→ P .

To explain the first transition, process P can synchronise either on action r or on action w. Both
actions are activated so that they become urgent after the first time-step. The second transition
models the execution of action r by synchronising R and V . These processes evolve into R and V ,
respectively. As a side effect, the urgent w in W loses its urgency since its synchronisation partner
V offers a new, non-urgent synchronisation. At this stage, it is function clean in Definition 2.5 that
effects this change. The above behaviour can be repeated, demonstrating that repeated reading
can repeatedly delay and thus block w indefinitely.

Alternatively, we can represent the variable in a such way that an occurrence of r cannot disable
the action w (i.e. a process reading V cannot block another process trying to write it). This can
be done by modeling r as non-blocking, i.e. V ′ = rec x.(r . (w.x)). According to our operational
rules, V ′ 1−→ V ′ = rec x.(r . (w.x)) rÃ rec x.(r . (w.x)) w7→ V ′. Hence:

P ′ 1−→ Q = (R ‖∅ W) ‖{r,w} V ′ r−→ Q′ = (rec x.r.x ‖∅ rec x.w.x) ‖{r,w} rec x.(r . (w.x)) r−→ Q′
w−→ (R ‖∅ W) ‖{r,w} rec x.(r . (w.x)) = P ′

After the first occurrence of the action r (corresponding to a synchronisation between R and V ′),

8

R becomes R and offers a new, non-urgent, instance of r to its partner; this causes the unmarking
of the urgent r in V ′. Once in Q′, we can either perform an r-action, evolving again into Q′, or
perform an action w and come back to P ′. But we cannot perform 1, i.e. w is not delayed by r in
contrast to P above. Moreover, from Q we can also perform w evolving directly to P ′. In this step,
the urgent r in R loses its urgency as above due to a new, non-urgent, synchronisation offered by
V ′. Therefore, repeated writes can delay the action r arbitrarily long, i.e. writing can still block
reading.

Remark 2.9 To understand the impact of read-prefixes on the timed behaviour of concurrent
systems more deeply, let us consider an example where two processes need to read the same value
from a variable to prepare an output they produce together. As noted in the introduction, if we
use non-blocking actions to model the variable, then such an output can be produced in at most
two units of time. Indeed, by our operational semantics,

(r.o.nil ‖{o} r.o.nil) ‖{r,w} rec x.r . w.x
1−→ (r.o.nil ‖{o} r.o.nil) ‖{r,w} rec x.r . w.x

r−→
(o.nil ‖{o} r.o.nil) ‖{r,w} rec x.r . w.x

r−→ (o.nil ‖{o} o.nil) ‖{r,w} rec x.r . w.x
1−→

(o.nil ‖{o} o.nil) ‖{r,w} rec x.r . w.x
o−→

If we use standard ordinary actions, then producing the output takes in the worst-case three units
of time. Indeed:

(r.o.nil ‖{o} r.o.nil) ‖{r,w} rec x.(r.x + w.x) 1−→ (r.o.nil ‖{o} r.o.nil) ‖{r,w} rec x.(r.x + w.x) r−→
(o.nil ‖{o} r.o.nil) ‖{r,w} rec x.(r.x + w.x) 1−→ (o.nil ‖{o} r.o.nil) ‖{r,w} rec x.(r.x + w.x) r−→
(o.nil ‖{o} o.nil) ‖{r,w} rec x.(r.x + w.x) 1−→ (o.nil ‖{o} o.nil) ‖{r,w} rec x.(r.x + w.x) o−→

The following proposition (proven in Appendix B) shows that all processes reachable from an
initial one (which is obviously clean) are clean. Hence, all processes of interest to us are clean.
The second item shows that a clean process that does not have to perform an action urgently (i.e.
U(Q) = ∅) does not contain urgent actions syntactically.

Proposition 2.10 Let Q ∈ P̃ be a clean process. Then:

1. Q
α−→ Q′ or Q

X−→r Q′ implies Q′ clean;

2. U(Q) = ∅ implies Q ∈ P̃1.

3 A read operator with a simpler semantics

In this section, we present a variation of the language PAFASr as it has been defined in Section 2.
For this, we define a new kind of read operator {µ1, . . . , µn} . Q with a slightly different syntax.
The intuition is that in a term like {µ1, . . . , µn} . Q, the read-set {µ1, . . . , µn} consists of all the
reading actions currently enabled. In this way we try to avoid terms with nested reading actions
and, as a consequence, we can describe the behaviour of these new PAFASs processes by means of
a simpler timed operational semantics with just one type of action transitions. In particular, this
makes it easier to implement the algorithm (described in Section 8.2) that detects violations of the
liveness property of MUTEX algorithms by showing the existence of a special kind of cycles. A
price to pay is that not all PAFASs processes have a reasonable semantics; but the subset with a
reasonable semantics is practically expressive enough due to the set of reading actions.

Definition 3.1 (timed process terms) The set S̃1 of initial (timed) process terms is generated by
the following grammar

P ::= nil
∣∣ x

∣∣ α.P
∣∣ {α1, . . . , αn} . P

∣∣ P + P
∣∣ P ‖A P

∣∣ P [Φ]
∣∣ rec x.P

9

where nil is a constant, x ∈ X , α ∈ Aτ , {α1, . . . , αn} ⊆ Aτ finite, Φ is a general relabelling function
and A ⊆ A possibly infinite. The set S̃ of (general) (timed) process terms is generated by the
following grammar:

Q ::= P
∣∣ α.P

∣∣ {µ1, . . . , µn} . Q
∣∣ Q + Q

∣∣ Q ‖B Q
∣∣ Q[Φ]

∣∣ rec x.Q

where P ∈ S̃1, α ∈ Aτ and {µ1, . . . , µn} is a finite subset of Aτ ∪ Aτ such that for each α ∈ Aτ ,∣∣{α, α} ∩ {µ1, . . . , µn}
∣∣ ≤ 1, i.e. {µ1, . . . , µn} cannot contain two copies (one lazy and the other

urgent) of the same action α. Notice that terms not satisfying such a property are not reachable
from initial ones anyway (see, Section 3.1). Again, Φ is a general relabelling function and A ⊆ A
possibly infinite. We say that a variable x ∈ X is read-guarded in Q if, for each subterm of Q of
the form {µ1, . . . , µn} . Q1, x is action-guarded in Q1. In this section, we assume that recursion
is action-guarded (as in Section 2) and read-guarded, i.e. for each term rec x.Q, the variable x is
read-guarded in Q. The set of closed timed process terms in S̃ and S̃1, simply called processes and
initial processes resp., is denoted by S and S1 resp.

In the following, we will focus on the so-called read-proper terms, which do have a reasonable
semantics; we will prove this by relating them to PAFASr processes with the same behaviour.
Read-proper terms only have “properly” nested reading behaviour, i.e. we want to avoid terms like
{a} . {b} . Q or {a} . Q′ + {b} . Q; these terms violate the intuition given above for the read-set
operator. More formally, we say that Q ∈ S̃ is read-guarded if every subterm of Q of the form
{µ1, . . . , µn} . Q′ is in the scope of some µ (i.e. in some subterm µ.()). A term Q ∈ S̃ is read-
proper if each subterm Q1 + Q2 is read-guarded and, for each subterm {µ1, . . . , µn} . Q1, Q1 is
read-guarded. With this definition, neither {a} . {b} . Q nor {a} . Q′ + {b} . Q are read-proper,
since the subterm {b} . Q is not in the scope of some µ and, thus, also not read-guarded.

Definition 3.2 (urgent basic actions) Let Q ∈ S̃ and A ⊆ Aτ . The set U(Q,A) is defined as in
Definition 2.2 where the Read-rule is replaced by:

Read: U({µ1, µ2, . . . , µn} . Q, A) = (U({µ1, µ2, . . . , µn})\A) ∪ U(Q,A)

where U({µ1, µ2, . . . , µn}) = {α ∈ Aτ | α ∈ {µ1, µ2, . . . , µn}}

Definition 3.3 (cleaning inactive urgencies) For Q ∈ S̃, we define clean(Q, A) as in Definition 2.3,
where the Read-rule is replaced by the following one. Again, we define clean(Q) as clean(Q, ∅).

Read: clean({µ1, µ2, . . . , µn} . Q,A) = {ν1, ν2, . . . , νn} . clean(Q,A)

where {ν1, ν2, . . . , νn} is the read-set we obtain from {µ1, µ2, . . . , µn} by unmarking all urgencies in
A; in more detail, for each i ∈ [1, n], µi ∈ {α, α} implies either (i) α ∈ A and νi = α, or (ii) α /∈ A
and νi = µi.

The definition for the function unmark(Q) for Q ∈ S̃ is omitted.

3.1 The timed operational semantics of PAFASs processes

Now, we describe the transitional semantics describing the functional behaviour and the temporal
behaviour of PAFASs terms.

Definition 3.4 (Functional operational semantics) The SOS-rules defining the transition relations
α−→⊆ (S̃× S̃) (the action transitions) are those in Table 12 where we replace the rule Reado with:

Reads1

µi ∈ {α, α}
{µ1, . . . , µn} . Q

α−→ {µ1, . . . , µn} . Q
Reads2

Q
α−→ Q′

{µ1, . . . , µn} . Q
α−→ Q′

2To be formally precise: we have to replace all arrows 7→, in Table 1 by −→.

10

Definition 3.5 (refusal transitional semantics) The inference rules defining the transition relation
X−→r⊆ S̃× S̃ where X ⊆ A are those in Table 3 where we replace the rules Readt1 and Readt2 with

Readt

Q
X−→r Q′, U({µ1, . . . , µn}) ∩ (X ∪ {τ}) = ∅
{µ1, . . . , µn} . Q

X−→r {µ1, . . . , µn} . Q′

where {µ1, . . . , µn} is obtained from {µ1, . . . , µn} by replacing each α by α.

An essential idea of reading is that it does not change the state of a process and therefore does
not block other actions. With the above operational semantics, we have {a} . {b} . Q

b−→ {b} . Q as
well as {a} . Q′ + {b} . Q

b−→ {b} . Q, violating this idea; therefore, we exclude such processes.

4 Mapping PAFASs into PAFASr

This section studies the expressiveness of the process description languages we have introduced
above. As a first result, Theorem 4.3 shows that for each read-proper Q ∈ S̃ there exists a corre-
sponding term in P̃ whose behaviour is bisimilar and even isomorphic to that of Q; see Appendix C
for the proof of Theorem 4.3 and some other related results. On the inverse claim (i.e. each PAFASr

term can be translated into a bisimilar read-proper PAFASs term) we will comment below.
We start by providing a translation function [[]] that maps terms in S̃ to corresponding terms in

P̃; to regard [[]] as a function in the read-case, we have to assume that actions are totally ordered,
and that the actions of a read-set are listed according to this order.

Definition 4.1 (a translation function) For Q ∈ S̃, [[Q]] is defined by induction on Q as follows:

Nil, Var, Pref : [[nil]] = nil, [[x]] = x, [[µ.P]] = µ.[[P]]
Read: [[{µ1, . . . , µn} . Q]] = µ1 µn . [[Q]]
Sum: [[Q1 + Q2]] = [[Q1]] + [[Q2]]
Par: [[Q1 ‖A Q2]] = [[Q1]] ‖A [[Q2]]
Rel: [[Q[Φ]]] = [[Q]][Φ]
Rec: [[rec x.Q]] = rec x.[[Q]]

Observe that [[]] is injective on read-proper terms; except for the read-case, this is easy since [[]]
preserves all other operators. In the read case, Q is read-guarded, i.e. the top-operator of Q and
[[Q]] is not .; hence, the read-set can be read off from [[{µ1, . . . , µn}.Q]] as the maximal sequence of
.-prefixes the term starts with. With this observation, the following two results show that [[]] is an
isomorphism between labelled transition systems, if we restrict it on the one hand to read-proper
terms and their transitions and on the other to the images of read-proper terms and the transitions
of these images. As a prerequisite for this, the first result states that the set of read-proper terms
is closed w.r.t. our timed operational semantics.

Proposition 4.2 Let Q ∈ S̃ be read-proper. Then: Q
α−→ Q′ or Q

X−→r Q′ implies Q′ is read-proper.

Theorem 4.3 For all read-proper Q ∈ S̃:

1. Q
α−→ Q′ (Q X−→r Q′) implies [[Q]] α−→ [[Q′]] ([[Q]] X−→r [[Q′]])

2. if [[Q]] α−→ Q′′ ([[Q]] X−→r Q′′) then Q
α−→ Q′ (Q X−→r Q′) with [[Q′]] = Q′′

For our application, it would be sufficient to prove that the full time steps of Q are matched;
but it is hard to imagine a proof for this that does not also give the matches for all time steps.

11

It is not clear yet whether the inverse claim (i.e. that each PAFASr term can be translated into
a bisimilar read-proper PAFASs term) holds. Just to give an idea of the difficulties, consider the
PAFASr process a . (b . c.nil ‖∅ d.nil); here, reading is not properly nested as in the images of [[]].
Surprisingly, this process has the same timed behaviour as (a . b . c.nil) ‖{a} (a . d.nil), which is
the translation of the read-proper S̃ process {a, b} . c.nil ‖{a} {a} . d.nil. Hence, the proof idea for
the inverse claim could be to find a transformation of arbitrary PAFASr terms to ‘properly nested’
ones. Unfortunately, this seems hard for the term a . (b . c.nil ‖∅ a.nil); probably, we should exclude
terms from consideration that are ill-formed in the sense that, in some subterm a . Q, a appears
as an ordinary prefix in Q. So the inverse claim is still under investigation.

5 Fairness and PAFASr

In this section we briefly describe our theory of fairness. It closely follows Costa and Stirling’s
theory of (weak) fairness. The main ingredients of the theory are:

- A labelling for process terms. This allows to detect during a transition which action is actually
performed; e.g., for process P = rec x.α.x, we need additional information to detect whether
the left-hand side instance of action α or the right-hand one is performed in the transition
P‖∅ P

α−→ P‖∅ P . When an action is performed, we speak of an event, which corresponds to
a label – or actually, different from [10, 9], a duple of labels as we will see.

- Live events. An action of a process term is live if it can currently be performed. In a term
like a.b.nil‖{b} b.nil only action a can be performed while b cannot, momentarily. Such a live
action corresponds to a possible event, i.e. to a label.

- Fair sequences. A maximal sequence is fair when no event in a process term becomes live and
then remains live throughout.

These items sketch the general methodology used by Costa and Stirling to define and isolate
fair computations in [10, 9]. We now describe the three items in more detail. The definitions in
the rest of this section generalise those in [4], which were mostly taken from [9] with the obvious
slight variations due to the different language we are using (the timed process algebra PAFASr with
TCSP parallel composition instead of CCS). We also take from [9] those results that are language
independent. The others will be proven.

5.1 A labelling for process terms

In order to determine the fairness of a transition sequence, Costa and Stirling use a labelling method.
Labels are associated with basic actions and operators inside a process. Along a computation, labels
are unique and, once a label disappears, it will not reappear in the process anymore. The set of
labels is LAB = {1, 2}∗ with ε as the empty label and u, v, w, . . . as typical elements; ≤ is the prefix
preorder on LAB. We have that u ≤ v if there is u′ ∈ LAB such that v = uu′ (and u < v if
u′ ∈ {1, 2}+). We also use the following notation:

- (Set of tuples) N = {〈v1, . . . , vn〉 | n ≥ 1, v1, . . . , vn ∈ LAB};
- (Composition of tuples) s1 × s2 = 〈v1, . . . , vn, w1, . . . , wm〉, where s1, s2 ∈ N and s1 =
〈v1, . . . , vn〉, s2 = 〈w1, . . . , wm〉;

- (Composition of sets of tuples) N ×M = {s1 × s2 | s1 ∈ N and s2 ∈ M}, where N, M ⊆ N .
Note that N = ∅ or M = ∅ implies N ×M = ∅.

12

All PAFASr operators and variables will now be labelled in such a way that no label occurs
more than once in an expression. We call this property unicity of labels. As indicated above, an
action being performed might correspond to a pair or more generally to a tuple of labels, namely
if it is a synchronisation; cf. the definition of live events below (5.7); therefore, we call tuples of
labels event labels. Labels (i.e. elements of LAB) are assigned systematically following the structure
of PAFASr terms usually as indices and in case of parallel composition as upper indices. Due to
recursion the labelling is dynamic: the rule for rec generates new labels.

Definition 5.1 (labelled process algebra) The labelled process algebra L(P̃) (and similarly L(P̃1)
etc.) is defined as

⋃
u∈LAB Lu(P̃), where Lu(P̃) =

⋃
Q∈ P̃ Lu(Q) and Lu(Q) is defined as follows:

Nil, Var: Lu(nil) = {nilu}, Lu(x) = {xu}
In examples, we will often write nil for nilu, if the label u is not relevant.

Pref: Lu(µ.P) = {µu.P ′ | P ′ ∈ Lu1(P)}
Read: Lu(µ . Q) = {µu1 .u Q′ |Q′ ∈ Lu2(Q)}
Sum: Lu(Q1 + Q2) = {Q′

1 +u Q′
2 |Q′

1 ∈ Lu1(Q1), Q′
2 ∈ Lu2(Q2)}

Par: Lu(Q1 ‖A Q2) = {Q′
1 ‖u

A Q′
2 |Q′

1 ∈ Lu1v(Q1), Q′
2 ∈ Lu2v′(Q2) where v, v′ ∈ LAB}

Rel: Lu(Q[Φ]) = {Q′[Φu] | Q′ ∈ Lu1v(Q) where v ∈ LAB}
Rec: Lu(rec x.Q) = {rec xu.Q′ |Q′ ∈ Lu1(Q)}
We assume that, in rec xu.Q, rec xu binds all free occurrences of a labelled x. We let L(Q) =⋃

u∈LAB Lu(Q) and LAB(Q) is the set of labels occurring in Q.

The unicity of labels must be preserved under derivation. For this reason in the rec rule the
standard substitution must be replaced by a substitution operation which also changes the labels
of the substituted expression.

Definition 5.2 (a new substitution operator) The new substitution operation, denoted by {| |},
is defined on L(P̃) using the following operators:

i. ()+v If Q ∈ Lu(P̃), then (Q)+v ∈ Lvu(P̃) obtained by prefixing v to all labels in Q.

ii. ()ε If Q ∈ Lu(P̃), then (Q)ε is the term in Lε(P̃) obtained by removing the prefix u from all
labels in Q. (Note that u is the unique prefix-minimal label in Q.)

Suppose Q,Q′ ∈ L(P̃) and xu, . . . , xv are all free occurrences of a labelled x in Q then Q{|Q′/x |} =
Q{((Q′)ε)+u/xu, . . . , ((Q′)ε)+v/xv}. The motivation of this definition is that in Q{|Q′/x|} each
substituted Q′ inherits the label of the x it replaces.

The relationship between activated and urgent actions of PAFASr and of labelled PAFASr

processes is easy. We can simply define U(Q,A) and A(Q, A) for a labelled PAFASr process Q just
as in Definitions 2.6 and 2.2, resp. Indeed, labels are just annotations used to distinguish different
instances of the same basic action and they do not interfere with the notions of activated and
urgent actions. Similarly, the operation of removing urgencies, inactive or not, does not depend on
labels. They are performed in the same way both in the unlabelled and labelled setting and can
be defined as in Section 2.

Finally, the behavioural operational semantics of the labelled PAFASr is obtained by replacing
the rule Reco in Definition 2.5 with the rule:

Reco

Q{| rec xu.unmark(Q)/x |} α7→ Q′

rec xu.Q
α−→ Q′

In the other rules we ignore the labels, but keep the labels of a static operator where . is “partly”
static; e.g we have the rules removed clean:

13

Prefo
µ ∈ {α, α}
µu.P

α7→ P
Readr1

µ ∈ {α, α}
µu1 .u Q

αÃ µu1 .u Q

because we assume that labels are not observable when actions are performed. As a consequence,
a labelled term Q and its unlabelled version, that we denote with R(Q), can perform exactly the
same transitions, as stated by the following proposition.

Proposition 5.3 Let Q ∈ Lu(P̃) and A ⊆ Aτ . Then:

i. Q
α−→ Q′ (Q X−→r Q′) implies R(Q) α−→ R(Q′) (R(Q) X−→r R(Q′)) in unlabelled PAFASr and

Q′ ∈ L(P̃);

ii. if R(Q) α−→ R (R(Q) X−→r R) in unlabelled PAFASr then for some Q′ with R = R(Q′), we have
Q

α−→ Q′ (Q X−→r Q′);

iii. A(Q,A) = A(R(Q), A) and U(Q,A) = U(R(Q), A).

As an example for 5.3 (ii), observe that for a.nil‖∅ nil
a−→ nil‖∅ nil and R(au1.nilu11‖u

∅ nilu2) =
a.nil‖∅ nil we indeed have au1.nilu11‖u

∅ nilu2
a−→ nilu11‖u

∅ nilu2; the latter term is a labelled process since
we allow Q′

1 ∈ Lu1v(Q1) in case Par of Definition 5.1, while for example in case Pref we require
P ′ ∈ Lu1(P).
The next facts are an immediate consequence of the labelling. We omit the proofs since they are
a trivial extension of similar results in [9] and can be easily proven by induction on terms in L(P̃).

Fact 5.4 Let Q ∈ Lu(P̃). Then:

1. no label occurs more than once in Q,

2. w ∈ LAB(Q) implies u ≤ w.

Central to labelling is the persistence and disappearance of labels under derivation. In partic-
ular, once a label disappears it can never reappear. It is these features which allow us to recognise
when a component contributes to the performance of an action.

Fact 5.5 Let Q ∈ Lu(P̃) and α, α1, . . . , αn ∈ Aτ . Then:

1. Q
αÃ Q′ implies Q′ ∈ Lu(P̃). Moreover LAB(Q′) = LAB(Q);

2. Q
α7→ Q′ implies Q′ ∈ Lv(P̃) with u ≤ v;

3. Q = Q0
α1−→ Q1

α2−→ . . .
αn−−→ Qn implies Qi ∈ Lvi(P̃) with u ≤ vi. Moreover, if w ∈ LAB such

that w < u then w /∈ LAB(Qi).

Fact 5.6 Let Q0 ∈ L(P̃). If Q0
α1−→ Q1

α2−→ . . .
αi−→ Qi

αi+1−−−→ . . .
αn−−→ Qn and v ∈ LAB(Q0)∩LAB(Qn)

then v ∈ LAB(Qi), for every i ∈ [0, n].

Throughout the rest of this section we assume the labelled calculus. However, whenever possible,
labels will be left implicit to keep the notation simple (as, for instance, in proofs of statements that
do not explicitly deal with labels in processes) and the same applies for the treatment of labelled
processes in the next section.

14

5.2 Live events

To capture the fairness constraint for execution sequences, we need to define the live events. For
αu.nil‖{α} αv.nil (with labels u and v), there is only one live action. This is action α; it can be
performed in only one way, i.e. there is only one α-event, which we will identify with the tuple 〈u, v〉,
i.e. with the tuple of labels of ‘local’ α’s that synchronise when the process performs α; recall that
we call such tuples event labels.3 Similarly, there is only one live action in αu.βv.nil‖{β}βy.nil (action
α corresponding to tuple 〈u〉) because the parallel composition prevents the instance of β labelled
by 〈y〉 from contributing an action. However, 〈v, y〉 becomes live, once action α is performed.

We now define LE(Q,A) as the set of live events of Q (when the execution of actions in A are
prevented by the environment). Again for technical reasons, we allow τ to be part of A.

Definition 5.7 (live events) Let Q ∈ L(P̃), A ⊆ Aτ . The set LE(Q,A) is defined below by induction
on Q. The set of live events in Q is defined as LE(Q, ∅) which we abbreviate to LE(Q).

Nil, Var: LE(nilu, A) = LE(xu, A) = ∅
Pref: LE(µu.P, A) =

{
{〈u〉} if µ ∈ {α, α} and α /∈ A

∅ otherwise

Read: LE(µv .u Q,A) =

{
{〈v〉} ∪ LE(Q, A) if µ ∈ {α, α} and α /∈ A

LE(Q,A) otherwise
Sum: LE(Q1 +u Q2, A) = LE(Q1, A) ∪ LE(Q2, A)
Par: LE(Q1 ‖u

B Q2, A) =
⋃

i=1,2
LE(Qi, A ∪B) ∪⋃

α∈B\A LE(Q1,Aτ\{α})× LE(Q2,Aτ\{α})
Rel: LE(Q[Φu], A) = LE(Q,Φ−1(A))
Rec: LE(rec xu.Q,A) = LE(Q,A)

Also in this case, the set A represents the restricted actions. Then, LE(au.P, {a}) must be empty
because the action a is prevented. Note that, in the Par-case, LE(Q1, A∪B)∪LE(Q2, A∪B) is the
set of the labels of the live actions of Q1 and Q2, when the environment prevents actions from A and
from B, corresponding to those actions that Q1 and Q2 can perform independently. To properly
deal with synchronisation, for all α ∈ B\A we combine each live event of Q1 corresponding to α
with each live event of Q2 corresponding to α, getting tuples of labels.

An important subset of the live events of a process Q is the subset of urgent live events, that
is, those that cannot be delayed anymore.

Definition 5.8 (urgent live events) Let Q ∈ L(P̃) and A ⊆ Aτ . The set UE(Q,A) is defined as
in Definition 5.7 when LE() is replaced by UE() and rules Pref and Read are replaced as follows.
The set set of urgent event of Q is defined as UE(Q) = UE(Q, ∅)

Pref: UE(µu.P, A) =

{
{〈u〉} if µ = α and α 6∈ A

∅ otherwise

Read: UE(µv .u Q,A) =

{
{〈v〉} ∪ UE(Q,A) if µ = α and α /∈ A

UE(Q, A) otherwise

An easy observation is the following lemma.

Lemma 5.9 Let Q be a labelled process term. Then:

1. UE(Q,A) ⊆ LE(Q,A), for every A ⊆ Aτ .

2. 〈v1, . . . , vn〉 ∈ LE(Q) implies vi ∈ LAB(Q), for every i ∈ [1, n].
3Since Costa and Stirling deal with fairness of components, they have no need for tuples.

15

3. Q ∈ L(P̃1) implies UE(Q,A) = ∅, for every A ⊆ Aτ .

In the rest of this section we just state some properties useful to prove our main correspondence
results. Detailed proofs have been moved into the appendixes. We start with a proposition relating
labels and (functional and temporal) transitions which will be used to prove Proposition 6.1. In
the case of functional transitions, if an event label is urgent and live in the source process, then
either the label preserves its status in the target one or one of its constituents disappears (a similar
statement would hold for live events in place of urgent ones). In the case of temporal transitions
the set of live events of the source state coincides with the set of live events of the target one. In
addition, after the temporal move all live events become urgent.

Proposition 5.10 Let Q,Q′ ∈ L(P̃) and A ⊆ Aτ . Then:

1. Q
α−→ Q′ and s = 〈v1, . . . , vn〉 ∈ UE(Q, A) implies either s ∈ UE(Q′, A) or there exists some

j ∈ [1, n] such that vj /∈ LAB(Q′);

2. Q
X−→r Q′ implies LE(Q,A) = LE(Q′, A) = UE(Q′, A).

The next proposition relates full time-steps and urgent activated actions. A process term can
perform a full time-step only if it does not have any pending urgent actions, and vice versa for
a action-guarded process term. Moreover, it shows how urgent activated actions and urgent live
events are strictly related. This statement will be used to prove Proposition 6.2 and 6.5.

Proposition 5.11 Let Q ∈ L(P̃) and A ⊆ Aτ . Then:

1. Q
1−→ implies U(Q) = ∅;

2. Q action-guarded and U(Q) = ∅ implies Q
1−→;

3. U(Q,A) = ∅ if and only if UE(Q,A) = ∅.

The following proposition states that process terms that are able to perform two subsequent
time steps cannot exhibit any functional behaviour. Moreover, if a term cannot make any functional
move (and is action-guarded), then it can let two time steps pass. Intuitively, this captures the
functional deadlock of terms. Terms that cannot exhibit any functional behaviour can let any
amount of time pass. The following proposition formalises this intuition. It will be used to prove
Proposition 6.6.

Proposition 5.12 Let Q,Q′, Q′′ ∈ L(P̃).

1. Q
1−→ Q′ 1−→ Q′′ implies Q 6 α−→ and Q′ 6 α−→ for any α ∈ Aτ . Moreover Q′ = Q′′;

2. Q action-guarded and Q 6 α−→ for any α ∈ Aτ implies Q
1−→ Q′ 1−→ Q′

5.3 Fair execution sequences

We can now define the (weak) fairness constraint. The following definitions and results are essen-
tially borrowed from [9], and just adapted to our notions of fairness and labelling. First of all, for a

process Q0, we say that a sequence of transitions γ = Q0
λ0−→ Q1

λ1−→ . . . with λi ∈ Aτ∪{1} is a timed
execution sequence if it is an infinite sequence of action transitions and full time-steps; note that a

maximal sequence of such transitions/steps is never finite, since for γ = Q0
λ0−→ Q1

λ1−→ . . .
λn−1−−−→ Qn,

we have either Qn
α−→ or Qn

1−→ by Proposition 5.12.2. The second part of this proposition is applica-
ble, since processes are always action-guarded. Note that a timed execution sequence is everlasting

16

in the sense of having infinitely many time steps if and only if it is non-Zeno; a Zeno run would
have infinitely many actions in a finite amount of time, which in a setting with discrete time means
exactly that it ends with infinitely many action transitions without a time step.

For an initial process P0, we say that a sequence of transitions γ = P0
α0−→ P1

α1−→ . . . with
αi ∈ Aτ is an execution sequence if it is a maximal sequence of action transitions; i.e. it is infinite
or ends with a process Pn such that Pn 6 α−→ for any action α. Now we formalise fairness by calling
a (timed) execution sequence fair, if no event becomes live and then remains live throughout.

Definition 5.13 (fair execution sequences) Let γ = Q0
λ0−→ Q1

λ1−→ . . . be an execution sequence or
a timed execution sequence from Q0; we will write ‘(timed) execution sequence’ for such a sequence.
We say that γ is fair if

¬(∃ s ∃ i . ∀ k ≥ i : s ∈ LE(Qk))

Following [9], now we present an alternative, more local, definition of fair computations which
will be useful to prove our main statements.

Definition 5.14 (B-step) For a process Q0, we say that Q0
λ0−→ Q1

λ1−→ . . .
λn−1−−−→ Qn with n > 0 is

a timed B-step when (i) B is a finite set of event labels, and (ii) B ∩ LE(Q0) ∩ . . . ∩ LE(Qn) = ∅. If

λi ∈ Aτ , i = 0, . . . , n− 1, then the sequence is a B-step. If Q0
λ0−→ Q1

λ1−→ . . .
λn−1−−−→ Qn is a (timed)

B-step and v = λ0 . . . λn−1 we write Q0
v−→B Qn+1.

In particular, a (timed) LE(Q)-step from Q is “locally” fair: all live events of Q lose their liveness
at some point in the step.

Definition 5.15 (fair-step sequences) A (timed) fair-step sequence from Q0 is any maximal se-
quence of (timed) steps of the form Q0

v0−→LE(Q0) Q1
v1−→LE(Q1) . . .

A fair-step sequence is simply a concatenation of locally fair steps. If δ is a (timed) fair-step
sequence, then its associated (timed) execution sequence is the sequence which drops all references
to the sets LE(Qi).

Corollary 5.16 A (timed) execution sequence is fair if and only if it is the sequence associated
with a (timed) fair-step sequence.

6 Fairness and Timing

This section relates fairness and timing in a process algebraic setting. It contains two main con-
tributions. First, we prove that all everlasting (i.e. non-Zeno) sequences of PAFASr processes are
fair. Second, we provide a characterisation of fair execution sequences of initial PAFASr processes
(PAFASr processes evolving only via functional operational semantics) in terms of timed execution
sequences. For finite state processes, one can derive from this a finite representation of the fair
runs with a transition system that has arcs labelled by regular expressions, as done in [4].

6.1 Fairness of everlasting sequences

The next two propositions are key statements for proving that everlasting timed execution sequences
of PAFAS processes are fair. The former result relates time steps, urgent live events and live events;
the latter one relate LE(P)-steps ans sequences of actions between consecutive time-step.

17

Proposition 6.1 Let Q be a labelled process term. Then: Q
X−→r Q1

α1−→ . . .
αn−1−−−→ Qn, where

X ⊆ A and α1, . . . , αn−1 ∈ Aτ , implies LE(Q1) ∩ (LE(Qn)\UE(Qn)) = ∅ (and by Proposition 5.10
also LE(Q) ∩ (LE(Qn)\UE(Qn)) = ∅).

Proof: Assume, toward a contradiction, that there exists a tuple of labels s = 〈v1, . . . , vm〉 such
that s ∈ LE(Q1) = UE(Q1) (by Proposition 5.10-2) and s ∈ LE(Qn)\UE(Qn). Lemma 5.9-2 and
s ∈ LE(Q1) imply v1, . . . , vm ∈ LAB(Q1). On the other hand, since s ∈ UE(Q1) but s /∈ UE(Qn), we
can find j, 1 ≤ j < n, such that s ∈ UE(Qj) and s /∈ UE(Qj+1). Then, by Proposition 5.10-1, there
exists some k ∈ [1,m] such that vk /∈ LAB(Qj+1). By Fact 5.6, vk ∈ LAB(Q1) and vk /∈ LAB(Qj+1)
implies vk /∈ LAB(Qi), for every i ∈ [j + 1, n] and, again by Lemma 5.9, s /∈ LE(Qi), for every
i ∈ [j +1, n]. In particular, s /∈ LE(Qn) which contradicts the assumption s ∈ LE(Qn)\UE(Qn). 2

Proposition 6.2 Let Q ∈ L(P̃) and v, w ∈ (Aτ)∗.

1. If Q
1−→ Q1

v−→ Q2
1−→ then Q

1v−→LE(Q) Q2;

2. If Q
v−→ Q′ 1−→ Q′

1
w−→ Q′

2
1−→ then Q

v1w−−→LE(Q) Q′
2.

Proof: Item 2 follows immediately from 1. and the definition of a timed B-step. We only prove
Item 1. Assume that Q

1−→ Q1
v−→ Q2. Proposition 6.1 implies LE(Q) ∩ (LE(Q2)\UE(Q2)) = ∅.

Moreover Q2
1−→ and Proposition 5.11 imply that U(Q2) = ∅ and UE(Q2) = ∅. Thus LE(Q) ∩

LE(Q1) ∩ . . . ∩ LE(Q2) ⊆ LE(Q) ∩ LE(Q2) = LE(Q) ∩ (LE(Q2)\UE(Q2)) = ∅. By the definition of a
timed B-step, Q

1v−→LE(P) Q2. 2

Theorem 6.3 Let v0, v1, v2 . . . ∈ (Aτ)∗. Each everlasting timed execution sequence, i.e. each timed
execution sequence of the form γ = P0

v0−→ P1
1−→ Q1

v1−→ P2
1−→ Q2

v2−→ P3
1−→ . . . is fair.

Proof: By Proposition 6.2 we have that P0
v01v1−−−→LE(P0) P2, P2

1v2−−→LE(P2) P3 and so on. Then γ is
a sequence associated with a timed fair-step sequence and is fair by Corollary 5.16. 2

Observe that an everlasting timed execution sequence, by its definition, does not depend on the
labelling, i.e. it is a notion of the unlabelled PAFAS calculus.

6.2 Relating Timed Executions and Fair Executions

While in the previous section we have shown that every everlasting timed execution is fair, here
we show that everlasting timed execution sequences of initial PAFAS processes in fact characterise
the fair untimed executions of these processes. Observe that the latter is a notion of a labelled
untimed process algebra (like CCS or TCSP), while the former is a notion of our unlabelled timed
process algebra. The key statement for proving this relates B-steps and action sequences performed
between two full time-steps. In more detail, we prove that whenever an initial process P can
perform a sequence v of basic actions and this execution turns out to be an LE(P)-step, then P can
alternatively let time pass (perform a 1-time step) and then perform the sequence of basic actions
v, and vice versa. The following proposition relates live events and transitional properties of terms
in P̃1 and their “marked” version. The proof and related results have been moved to Appendix G.

Proposition 6.4 Let Q ∈ L(P̃) and P ∈ L(P̃1) such that P = unmark(Q). Then:

1. LE(Q,A) = LE(P, A) for every A;

18

2. Q
α−→ Q′ implies P

α−→ P ′ and P ′ = unmark(Q′) for some P ′. Moreover UE(Q′, A) ⊆ UE(Q,A)
and, whenever Q′ is clean and UE(Q′) = ∅, we have Q′ = P ′;

3. P
α−→ P ′ implies Q

α−→ Q′ and P ′ = unmark(Q′) for some Q′.

Now we are ready to present our key proposition relating LE-step and temporal transitions.

Proposition 6.5 Let P0 ∈ L(P1) and v = α1 . . . αn ∈ (Aτ)+. Then:

1. P0
v−→LE(P0) Pn implies P0

1−→ Q0
v−→ Pn;

2. P0
1−→ Q0

v−→ Qn
1−→ implies Qn = Pn ∈ L(P1) and P0

v−→LE(P0) Pn.

Proof: Let us first prove Item 1. P0
v−→LE(P0) Pn implies P0

v−→ Pn and LE(P0) ∩ . . . ∩ LE(Pn) = ∅.
Since P0 ∈ L(P1), it is P0

1−→ Q0 with P0 = unmark(Q0) (easy induction proof) and, by Proposition
6.4-3 and 6.4-1, Q0

α0−→ . . .
αn−−→ Qn with Pi = unmark(Qi) and LE(Pi) = LE(Qi) for every i ∈ [0, n].

Then LE(Q0) ∩ . . . ∩ LE(Qn) = ∅ and, since UE(S) ⊆ LE(S) for a generic S (Lemma 5.9), also
UE(Q0) ∩ . . . ∩ UE(Qn) = ∅. Moreover, by Proposition 6.4-2, UE(Qi+1) ⊆ UE(Qi) for i ∈ [0, n− 1].
Thus UE(Qn) = ∅, Qn clean (by Proposition 2.10) and Proposition 6.4-2 imply Qn = Pn. We get
P0

1−→ Q0
v−→ Pn.

Now, assume P0
1−→ Q0

v−→ Qn
1−→. By Proposition 6.1 it is LE(Q0) ∩ (LE(Qn)\UE(Qn)) = ∅.

Moreover Qn
1−→ and Propositions 5.11-1 and 5.11-3 imply UE(Qn) = ∅ and, hence, LE(Q0) ∩

LE(Qn) = ∅ = LE(Q0) ∩ . . . ∩ LE(Qn). Now, P0 = unmark(Q0) (as above) Propositions 6.4-2 and
6.4-1 implies P0

α0−→ . . .
αn−−→ Pn with Pi = unmark(Qi), LE(Pi) = LE(Qi) for every i ∈ [0, n]. Again

by Propositions 2.10 and 6.4-2, we also have Qn = Pn. Thus, by definition, P0
v−→LE(P0) Pn. 2

Iterative applications of Proposition 6.5 prove the main theorems of this section. To present our
characterisation results we distinguish between finite and infinite sequences of untimed processes.

Proposition 6.6 Let P ∈ L(P1) and v0, v1, . . . ∈ (Aτ)+. Then:

1. For any finite fair-step sequence from P

P = P0
v0−→LE(P0) P1

v1−→LE(P1) P2 . . . Pn−1
vn−1−−−→LE(Pn−1) Pn

there exists a timed execution sequence

P = P0
1−→ Q0

v0−→ P1
1−→ Q1

v1−→ P2 . . . Pn−1
1−→ Qn−1

vn−1−−−→ Pn
1−→ Qn

1−→ Qn . . .

2. For any timed execution sequence

P = P0
1−→ Q0

v0−→ P1
1−→ Q1

v1−→ P2 . . . Pn−1
1−→ Qn−1

vn−1−−−→ Pn
1−→ Qn

1−→ Qn . . .

there exists a finite fair-step sequence from P

P0
v0−→LE(P0) P1

v1−→LE(P1) P2 . . . Pn−1
vn−1−−−→LE(Pn−1) Pn

19

Proof: First we prove Item 1. Assume P0
v0−→LE(P0) P1

v1−→LE(P1) P2 . . . Pn−1
vn−1−−−→LE(Pn−1) Pn and

Pn 6 α−→ for any α. By iterative applications of Proposition 6.5-1 we can prove that Pi
1−→ Qi

vi−→ Pi+1

for i ∈ [0, n − 1]. Moreover Pn ∈ L(P1) (and hence Pn action-guarded) and Pn 6 α−→ for any α ∈ Aτ

imply, by Proposition 5.12-2, Pn
1−→ Qn

1−→ Qn. Now, we prove Item 2. P = P0
1−→ Q0

v0−→
P1

1−→ Q1
v1−→ P2 . . . Pn−1

1−→ Qn−1
vn−1−−−→ Pn

1−→ Qn
1−→ Qn . . . Then, by iterative applications of

Proposition 6.5-2, we can prove that P = P0
v0−→LE(P0) P1

v1−→LE(P1) P2 . . . Pn−1
vn−1−−−→LE(Pn−1) Pn.

Moreover Pn
1−→ Qn

1−→ Qn and Proposition 5.12-1 imply Pn 6 α−→ for any α ∈ Aτ . 2

Similarly we can prove an analogous result for infinite sequences.

Proposition 6.7 Let P ∈ L(P1) and v0, v1, . . . ∈ (Aτ)+. Then:

1. For any infinite fair-step sequence from P

P = P0
v0−→LE(P0) P1

v1−→LE(P1) P2 . . . Pi
vi−→LE(Pi) Pi+1 . . .

there exists a timed execution sequence

P = P0
1−→ Q0

v0−→ P1
1−→ Q1

v1−→ P2 . . . Pi
1−→ Qi

vi−→ Pi+1 . . .

2. For any timed execution sequence

P = P0
1−→ Q0

v0−→ P1
1−→ Q1

v1−→ P2 . . . Pi
1−→ Qi

vi−→ Pi+1 . . .

there exists a finite fair-step sequence from P

P = P0
v0−→LE(P0) P1

v1−→LE(P1) P2 . . . Pi
vi−→LE(Pi) Pi+1 . . .

By Proposition 5.3 we can also remove the labels from processes Pi, Qi in the timed computation,
and by Corollary 5.16 we can replace fair-step sequences by fair execution sequences. This way,
we obtain a similar correspondence result between fair executions of labelled PAFASr and timed
executions of unlabelled PAFASr.

Theorem 6.8 (Characterisation of finite fair timed execution sequences)
Let P ∈ L(P1) and α0, α1, α2 . . . ∈ Aτ . Then:

1. For any finite fair execution sequence from P

P = P0
α0−→ P1

α1−→ P2 . . . Pn−1
αn−1−−−→ Pn

there exists a timed execution sequence in unlabelled PAFASr

R(P) = Ri0
1−→ Qi0

vi0−−→ Ri1
1−→ Qi1

vi1−−→ Ri2 . . . Rim
1−→ Qim

1−→ Qim
1−→ . . .

where i0, i1, . . . , im−1, im ∈ [0, n] with i0 = 0 and im = n, vij = αijαij+1 . . . αij+1−1, and
Rij = R(Pij), for every j ∈ [0,m].

20

2. For any timed execution sequence from R(P) in unlabelled PAFASr

R(P) = Ri0
1−→ Qi0

vi0−−→ Ri1
1−→ Qi1

vi1−−→ Ri2 . . . Rim
1−→ Qim

1−→ Qim
1−→ . . .

where i0 = 0, vij = αijαij+1 . . . αij+1−1, for every j ∈ [0,m], there exists a finite fair execution
sequence

P = P0
α0−→ P1

α1−→ P2 . . . Pn−1
αn−1−−−→ Pn

where im = n and Rij = R(Pij), for every j ∈ [0, m].

Theorem 6.9 (Characterisation of infinite fair timed execution sequences)
Let P ∈ L(P1) and α0, α1, α2 . . . ∈ Aτ . Then:

1. For any infinite fair execution sequence from P

P = P0
α0−→ P1

α1−→ P2 . . . Pi
αi−→ Pi+1 . . .

there exists a timed execution sequence in unlabelled PAFASr

R(P) = Ri0
1−→ Qi0

vi0−−→ Ri1
1−→ Qi1

vi1−−→ Ri2 . . . Rij
1−→ Qij

vij−−→ Rij+1 . . .

where i0 = 0, vij = αijαij+1 . . . αij+1−1 and Rij = R(Pij), for every j ≥ 0.

2. For any timed execution sequence from R(P) in unlabelled PAFASr

R(P) = Ri0
1−→ Qi0

vi0−−→ Qi1
1−→ Ri1

vi1−−→ Ri2 . . . Rij
1−→ Qij

vij−−→ Rij+1 . . .

where i0 = 0, vij = αijαij+1 . . . αij+1−1, for every j ≥ 0, there exists an infinite fair execution
sequence

P = P0
α0−→ P1

α1−→ P2 . . . Pi
αi−→ Pi+1 . . .

where Rij = R(Pij), for every j ≥ 0.

Example 6.10 Consider again P = (R ‖∅ W) ‖{r,w} V from Example 2.8 and a run from P con-
sisting of infinitely many r’s. Such a run is fair w.r.t. actions; in particular, it is fair for w
because, at each transition, process V offers a “fresh” action w for synchronisation – each time
an action r is performed, a new instance of w is produced. We can use timing to see this fair-
ness formally. After a time step, all activated actions become urgent and must be performed or
get disabled before the next time step; this happens when r is performed, as we noted above:
P

1−→ ((rec x. r.x) ‖∅ (rec x. w.x)) ‖{r,w} rec x. (r.x + w.x) r−→ P . If we repeat this infinitely often,
we get a non-Zeno timed execution sequence related to the trace of infinitely many r’s. Thus, fair-
ness of actions allows computations along which repeated reading of a variable indefinitely blocks
another process trying to write to it (and vice versa for repeated writing).

As stated in [6] this is the reason why some fair runs of Dekker’s algorithm violate liveness (see
below) when using standard PAFAS. Note that this problem is not specific to our setting or to our
notion of fairness. In [17], Raynal writes about Dekker that possibly, “ if Pi is a very fast repetitive
process which ... keeps entering its critical section, ... Pj cannot set flag[j] to true, being prevented
from doing so by Pi’s reading of the variable.” He observes that liveness of the algorithm therefore
depends on the liveness of the hardware. This is exactly the sort of consideration for which we have

21

a formal treatment: read prefixes say that the hardware guarantees that at least infinite reading
cannot block writing.

In the case of our example, we can prevent this kind of unwanted behaviour by modelling the
action r as reading (see Example 2.8). Indeed, a run from P ′ = (R ‖∅ W) ‖{r,w} V ′ consisting
of infinitely many r is not fair, since we can have at most one time step along such a run: e.g.
P ′ 1−→ (R ‖∅ W) ‖{r,w} V ′ = Q

r−→ Q′ r−→ . . .
r−→ Q′ . . ., where Q′ does not allow a full time step. Now,

fairness of actions ensures that a process trying to write the variable will eventually do so. Notice
that, on the contrary, a run from P ′ consisting of infinitely many w only is still fair (again by
Example 2.8, P ′ 1−→ Q

w−→ P ′) and, hence, repeated writing of a variable can block another process
trying to read it. We can prevent also this kind of behaviour if the process variable is represented
as V ′′ = r . (w . nil), which only makes sense if writing does not change the system state.

7 Fairness and PAFASs

In this section we briefly consider the problem of defining and characterizing fair computations of
read-proper S̃-terms. Due to our expressiveness result (Theorem 4.3) and due to the correspondence
between the timed behaviour of a labelled term Q ∈ L(P̃) and its unlabelled version (see Proposition
5.3), fair execution sequences in the case of read-proper terms in S̃ can be defined as follows.

Definition 7.1 (fair execution sequences) Let Q0 ∈ S̃ be read-proper. We say that a (timed)

execution sequence γ = Q0
λ0−→ Q1

λ1−→ . . . (in unlabelled PAFASs) is fair if the (timed) execution

sequence γ′ = Q′
0

λ0−→ Q′
1

λ1−→ . . . (in the labelled PAFASr) is where Q′
i ∈ L([[Qi]]) for each i ≥ 0.

Again by Theorem 4.3 and Proposition 5.3, we can state the following theorem, providing a
characterisation of fair execution sequences of initial read-proper PAFASs processes in terms of
timed execution sequences, as a trivial consequence of Theorems 6.8 and 6.9.

Theorem 7.2 (Characterisation of fair timed execution sequences for PAFASs processes)
Let S ∈ S1 be read-proper and α0, α1, α2 . . . ∈ Aτ . Then:

1. Any finite execution sequence from S

S = S0
α0−→ S1

α1−→ S2 . . . Sn−1
αn−1−−−→ Sn

is fair iff there exists a timed execution sequence

Ri0
1−→ Qi0

vi0−−→ Ri1
1−→ Qi1

vi1−−→ Ri2 . . . Rim
1−→ Qim

1−→ Qim
1−→ . . .

where i0, i1, . . . , im−1, im ∈ [0, n] with i0 = 0 and im = n, vij = αijαij+1 . . . αij+1−1, and
Rij = Sij , for every j ∈ [0, m].

2. Any infinite fair execution sequence from S

S = S0
α0−→ S1

α1−→ S2 . . . Si
αi−→ Si+1 . . .

is fair iff there exists a timed execution sequence

Ri0
1−→ Qi0

vi0−−→ Ri1
1−→ Qi1

vi1−−→ Ri2 . . . Rij
1−→ Qij

vij−−→ Rij+1 . . .

where i0 = 0, vij = αijαij+1 . . . αij+1−1 and Rij = Sij , for every j ≥ 0.

22

8 Dekker’s algorithm and its liveness property

In this section we briefly describe Dekker’s MUTEX algorithm. There are two processes P1 and P2,
two Boolean-valued variables b1 and b2, whose initial values are false, and a variable k, which may
take the values 1 and 2 and whose initial value is arbitrary. Informally, the b variables are “request”
variables and k is a “turn” variable: bi is true if Pi is requesting entry to its critical section and k
is i if it is Pi’s turn to enter its critical section. Only Pi writes bi, but both processes read it. The
ith process (with i = 1, 2) can be described as follows, where j is the index of the other process:

while true do begin
〈noncritical section〉;
bi = true;
while bj do if k = j then begin

bi := false; while k = j do skip; bi := true;
end;
〈critical section〉;
k := j; bi := false;

end;

8.1 Translating the Algorithm into PAFASs Processes

In our translation of the algorithm into PAFASs, we use essentially the same coding as Walker
in [20]. Each program variable is represented as a family of processes. For instance, the process
B1(false) denotes the variable b1 with value false. The sort of the process B1(false) (i.e. the set
of actions it can ever perform) is the set {b1rf , b1rt , b1wf , b1wt} where b1rf and b1rt represent the
actions of reading the values false and true from b1, b1wf and b1wt represent, respectively, the
writing of the values false and true into b1. Let B = {false, true} and K = {1, 2}.

Definition 8.1 (the algorithm) Let i ∈ {1, 2}. We define the processes representing program
variables as follows:

Bi(false) = {birf , biwf } . biwt .Bi(true)
Bi(true) = {birt , biwt} . biwf .Bi(false)
K(1) = {kr1 , kw1} . kw2 .K(2)
K(2) = {kr2 , kw2} . kw1 .K(1)

Let B = {birf , birt , biwf , biwt | i ∈ {1, 2}} ∪ {kr1 , kr2 , kw1 , kw2} be the union of the sorts of all
variables and ΦB the relabelling function such that ΦB(α) = τ if α ∈ B and ΦB(α) = α if α /∈ B.
Given b1, b2 ∈ B, k ∈ K, we define PV(b1, b2, k) = (B1(b1) ‖∅ B2(b2)) ‖∅ K(k). Processes P1 and P2

are represented by the following PAFAS processes; the actions reqi and csi have been added to
indicate the request to enter and the execution of the critical section by the process Pi.

P1 = req1.b1wt .P11 + τ.P1 P2 = req2.b2wt .P21 + τ.P2

P11 = b2rf .P14 + b2rt .P12 P21 = b1rf .P24 + b1rt .P22

P12 = kr1 .P11 + kr2 .b1wf .P13 P22 = kr2 .P21 + kr1 .b2wf .P23

P13 = kr1 .b1wt .P11 + kr2 .P13 P23 = kr2 .b2wt .P21 + kr1 .P23

P14 = cs1.kw2 .b1wf .P1 P24 = cs2.kw1 .b2wf .P2

Now, we define the algorithm as Dekker = ((P1 ‖P2)‖B PV(false, false, 1))[ΦB]. The sort of Dekker
is the set Ad = {reqi, csi | i = 1, 2}.

A MUTEX algorithm like Dekker’s satisfies liveness if, in every fair trace, each reqi is followed
by the respective csi. Since no process should be forced to request by the fairness assumption, Pi

has the alternative of an internal move, i.e. staying in its noncritical section.

23

8.2 Liveness violations and catastrophic cycles

Based on PAFAS, a testing-based faster-than relation has been defined in [8] that compares pro-
cesses according to their worst-case efficiency. In [7], this testing-approach is adapted to a setting
where user behaviour is known to belong to a very specific, but often occurring class of request-
response behaviours: processes serving these users receive requests via an action in and provide a
response out for each in-action; it is shown how to determine an asymptotic performance measure
for finite-state processes of this kind. This result only holds for request-response processes that pass
certain sanity checks: they must not produce more responses than requests, and they must allow
requests and provide responses in finite time. While the first requirement can easily be checked by
looking at the transition system, violation of the latter requirement is characterised as the existence
of so-called catastrophic cycles in a reduced transition system denoted rRTS(P). The refusal tran-
sition system of P – denoted by RTS(P) – consists of all transitions Q

α−→ Q′ and Q
X−→r Q′, where

Q is reachable from P via such transitions. rRTS(P) is obtained by removing all time steps except
those Q

X−→r Q′ where either X = {out} and Q has some pending out-action or X = {in, out};
then, all processes not reachable any more are deleted as well. In the case X = {out}, some in has
not received a response and the user is waiting for an out, but the process can still delay this, while
being willing to accept another request immediately. The case X = {in, out} corresponds to a full
time step). A cycle is catastrophic if it contains a time step but no in- or out-transition, such that
time can pass without end without any useful actions.

A tool has been developed for automatically checking whether a process of (original) PAFAS
has a catastrophic cycle with the algorithm described in [7], and only recently it has been adapted
to a setting with reading actions. We will now give a result that allows us to decide whether Dekker
is live using this tool. The tool cannot be applied directly: first, Dekker has more than two actions;
second, it can perform a full time step followed by the two internal actions of P1 and P2 giving a
catastrophic cycle, which is not relevant for the the liveness property.

Consequently, we modify Dekker to obtain a new process Dekker io as follows: we change the
actions req1 and cs1 into τ actions, we delete the τ -summand of P2 (see Definition 8.1) and, finally,
we change the actions req2 and cs2 in in and out, respectively. With this, we get the following
result (proven in Appendix H) and corollary:

Theorem 8.2 Dekker is live iff Dekker io does not have catastrophic cycles.

Corollary 8.3 Dekker is live.

8.3 An alternative representation of the Dekker’s algorithm

To further stress the impact of introducing non-blocking actions in PAFAS (and in general in mod-
elling concurrent systems), in this section we show that already a slight change in our representation
of Dekker’s algorithm (in particular, a slightly different representation of the program variables)
may have a decisive impact on the liveness property. Let Dekker ` be the new version of Dekker we
obtain by replacing the program variables in Definition 8.1 by the following ones.

Bi(false) = birf . (b1wf .B1(false) + b1wt .B1(true))
Bi(true) = birt . ((b1wf .B1(false) + b1wt .B1(true))
K(i) = kri . (kw1 .K(1) + kw2 .K(2))

In this case, all write actions (even those that write the old value again) are ordinary actions.
Example 8.4 shows that Dekker ` is not live under the assumption of fairness of actions, i.e. there
exist non-Zeno execution sequences of Dekker ` that demonstrate the violation of liveness.

24

Example 8.4 Consider the following sequence of steps from Dekker `:

Dekker `
1−→ Q0 = ((P1 ‖ P2) ‖B PV(false, false, 1))[ΦB]

req1τ req2τ−−−−−−−→
((P11 ‖ P21) ‖B PV(true, true, 1))[ΦB] τττ−−→
((P11 ‖ P23) ‖B PV(true, false, 1))[ΦB] τcs1τ−−−→

P = ((b1wf .P1 ‖ P23) ‖B PV(true, false, 2))[ΦB]

Now, let B′1(true) = b1rt . (b1wf .B1(false) + b1wt .B1(true)), K′(2) = kr2 . . (kw1 .K(1) + kw2 .K(2))
and P ′

23 = kr2 .b2wt .P21+kr1 .P23 (notice that we have marked as urgent the only activated actions)
then:

P
1−→ Q = ((b1wf .P1 ‖ P ′

23) ‖B (B′1(true) ‖ B2(false) ‖ K′(2)))[ΦB]
τ req1τ τ cs1−−−−−−−→

((kw2 .b1wf .P1 ‖ P ′
23) ‖B (B1(true) ‖ B2(false) ‖ K′(2)))[ΦB] τ−→

P = ((b1wf .P1 ‖ P23) ‖B PV(true, false, 2)))[ΦB]

As a consequence of the execution of the last internal action (i.e. after the rewriting of the value
2 to the variable k, K′(2) evolves into K(2) offering a new, non-urgent occurrence of the action kr2
to its synchronisation partners. This causes the unmarking of the (at this stage inactive) urgency

in P ′
23. Thus, the execution sequence Dekker `

req1 τ req2 τ5cs1 τ−−−−−−−−−−−→ P1
τ req1 τ2 cs1 τ−−−−−−−−→ P1 . . . is fair but

not live since the process P2 will never enter its critical section.

References

[1] P. Bouyer, S. Haddad, P.A. Reynier. Timed Petri Nets and Timed Automata: On the Discrim-
inating Power of Zeno Sequences. Proc. of ICALP’06, LNCS 4052, pp. 420-431, 2006.

[2] S. Christensen, N. D. Hansen. Coloured Petri nets extended with place capacities, test arcs,
and inhibitor arcs. In Applications of Theory of Petri Nets, LNCS 691, pp. 186-205, 1993.

[3] F. Corradini, M.R. Di Berardini and W. Vogler. PAFAS at work: Comparing the Worst-Case
Efficiency of Three Buffer Implementations. Proc. of 2nd Asia-Pacific Conference on Quality
Software, APAQS 2001, pp. 231-240, IEEE, 2001.

[4] F. Corradini, M.R. Di Berardini and W. Vogler. Fairness of Actions in System Computations.
Acta Informatica 43, pp. 73 130, 2006.

[5] F. Corradini, M.R. Di Berardini, and W. Vogler. Fairness of Components in System Computa-
tions Theoretical Computer Science 356, pp. 291-324, 2006

[6] F. Corradini, M.R. Di Berardini, and W. Vogler. Checking a Mutex Algorithm in a Process
Algebra with Fairness. Proc. of CONCUR ’06, pp. 142-157, LNCS 4137, 2006.

[7] F. Corradini, W. Vogler. Measuring the Performance of Asynchronous Systems with PAFAS.
Theoretical Computer Science, 335, pp. 187-213, 2005.

[8] F. Corradini, W. Vogler, and L. Jenner. Comparing the Worst-Case Efficiency of Asynchronous
Systems with PAFAS. Acta Informatica 38, pp. 735-792, 2002.

[9] G. Costa, C. Stirling. Weak and Strong Fairness in CCS. Information and Computation 73,
pp. 207-244, 1987.

[10] G. Costa, C. Stirling. A Fair Calculus of Communicating Systems. Acta Informatica 21, pp.
417-441, 1984.

[11] F. Crazzolara, G. Winskel. Events in security protocols. In Proc. of 8th ACM conference on
Computer and Communication Security, CCS’01, pp. 96-105, 2001.

25

[12] N. Francez. Fairness. Springer, 1986.

[13] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[14] R. Milner. Communication and Concurrency. International series in computer science, Prentice
Hall International, 1989.

[15] U. Montanari, F. Rossi. Contextual net. Acta Informatica 32, pp. 545-596, 1995.

[16] U. Montanari, F. Rossi. Contextual occurrence nets and concurrent constraints programming.
In Proc. of Graph Transformation in Computer Science, LNCS 776, pp. 280-295, 1994

[17] M. Raynal. Algorithms for Mutual Exclusion. North Oxford Academic, 1986.

[18] G. Ristori. Modelling Systems with Shared Resources via Petri Nets. PhD thesis, Department
of Computer Science, University of Pisa, 1994.

[19] W. Vogler. Efficiency of Asynchronous Systems, Read Arcs and the MUTEX-problem. Theo-
retical Computer Science 275(1-2), pp. 589-631, 2002.

[20] D.J. Walker. Automated Analysis of Mutual Exclusion algorithms using CCS. Formal Aspects
of Computing 1, pp. 273-292, 1989.

26

A Useful Properties

In this appendix section, we state and prove some useful properties concerning some of the notions
in the main body of the paper. They are not related to each other, but just useful to prove the
main statements.

Proposition A.1 Let Q ∈ P̃, A,A′ ⊆ Aτ and α ∈ Aτ .

1. α ∈ U(Q,A) implies α /∈ A;

2. α ∈ U(Q,A) and α /∈ A′ implies α ∈ U(Q,A′);

3. A ⊆ A′ implies U(Q,A′) ⊆ U(Q,A);

4. U(Q,A) = U(Q)\A.

Proof: First we prove Items 1 and 2 by induction hypothesis on Q ∈ P̃.
Nil, Var: Q = nil, Q = x. These cases are not possible since U(Q,A) = ∅.
Pref: Q = µ.P1 with P1 ∈ P̃1. the latter case.

1. α ∈ U(Q,A) 6= ∅ implies µ = α and α /∈ A.

2. Again α ∈ U(Q,A) 6= ∅ implies µ = α and α /∈ A. Thus, α /∈ A′ implies U(Q,A′) = {α}
and, hence, α ∈ U(Q,A′).

Read: Q = µ . Q1.

1. α ∈ U(Q,A) 6= ∅ implies either µ = α and α /∈ A or α ∈ U(Q1, A). Let us consider only
the latter case (since in the former one there is noting to prove). Then, by induction
hypothesis, it is α /∈ A.

2. Again α ∈ U(Q,A) 6= ∅ implies either µ = α and α /∈ A or α ∈ U(Q1, A). In the former
case, µ = α and α /∈ A′ implies α ∈ U(Q,A′). In the latter one, α ∈ U(Q1, A) and
α /∈ A′ implies, by induction hypothesis, α ∈ U(Q1, A

′) ⊆ U(Q,A′).

Sum: Q = Q1 + Q2

1. α ∈ U(Q,A) implies α ∈ U(Q1, A) or α ∈ U(Q2, A). In both cases, by induction
hypothesis, α /∈ A.

2. α ∈ U(Q,A) implies (i) α ∈ U(Q1, A) or (ii) α ∈ U(Q2, A). Consider the case (i)
(the other one is similar). α ∈ U(Q1, A) and α /∈ A′ implies, by induction hypothesis,
α ∈ U(Q1, A

′) ⊆ U(Q,A′).

Par: Q = Q1 ‖B Q2.

1. Assume α ∈ U(Q,A) and consider the following possible subcases.

- α ∈ U(Q1, A ∪B). By induction hypothesis µ /∈ A ∪B and, hence, µ /∈ A.
- α ∈ U(Q2, A∪B) or α ∈ (U(Q1, A)∩U(Q2, A))∩B. Both these cases can be proven

as the previous one.

2. Assume α ∈ U(Q,A), α /∈ A′ and consider the following possible subcases.

- α ∈ U(Q1, A ∪ B). By Item 1, we have that α /∈ A ∪ B and, hence, α /∈ B. By
induction hypothesis α ∈ U(Q1, A ∪B) and α /∈ A′ ∪B implies α ∈ U(Q1, A

′ ∪B).
- α ∈ U(Q2, A ∪B). Similar to the previous case.

27

- α ∈ (U(Q1, A) ∩ U(Q2, A)) ∩ B. In such a case, by induction hypothesis, we have
that α ∈ (U(Q1, A

′) ∩ U(Q2, A
′)) ∩B ⊆ U(Q,A′).

Rel: Q = Q1[Φ].

1. If α ∈ U(Q,A) = Φ(U(Q1, Φ−1(A))) then α = Φ(β) for some β ∈ U(Q1, Φ−1(A)). By
induction hypothesis β /∈ Φ−1(A) = {γ | Φ(γ) ∈ A} and, hence, α /∈ A.

2. Again α ∈ U(Q,A) = Φ(U(Q1, Φ−1(A))) then α = Φ(β) for some β ∈ U(Q1,Φ−1(A)).
Moreover α /∈ A′ implies β /∈ Φ−1(A′) and, by induction hypothesis, β ∈ U(Q1, Φ−1(A′)).
Thus α = Φ(β) ∈ Φ(U(Q1, Φ−1(A′))) = U(Q,A′).

Rec: Q = rec x.Q1.

1. α ∈ U(Q,A) = U(Q1, A) implies, by induction hypothesis, α /∈ A.

2. α ∈ U(Q,A) = U(Q1, A) and α /∈ A′ implies, by induction hypothesis, α ∈ U(Q1, A
′) =

U(Q,A′).

Now we can prove Items 3. and 4.

3. Assume α ∈ U(Q,A′). Then, by Item 1, α /∈ A′ and, since A ⊆ A′, α /∈ A. Thus, α ∈ U(Q, A′),
α /∈ A and Item 2. imply α ∈ U(Q,A).

4. By Item 2, α ∈ U(Q)\A, i.e. α ∈ U(Q) and α /∈ A, implies α ∈ U(Q,A). Moreover, Items 3.
implies U(Q,A) ⊆ U(Q) (since it is always ∅ ⊆ A). Finally, α ∈ U(Q,A) and Item 1. implies
α /∈ A. Thus we can conclude that U(Q, A) ⊆ U(Q)\A.

2

Proposition A.2 Let Q,R ∈ P̃, x ∈ X action-guarded in Q and A ⊆ Aτ . Then U(Q{R/x}, A) =
U(Q,A).

Proof: We proceed by induction on Q ∈ P̃.

Nil: Q = nil. In this case x is action-guarded in Q and Q{R/x} = nil. Thus U(Q{R/x}, A) =
U(Q,A) = ∅.

Var: Q = y. x action-guarded in Q implies x 6= y and Q{R/x} = y. Similar to the Nil-case.

Pref: Q = α.P1 or Q = α.P1. We prove only the latter case (the formes is simpler). In this case x is
guarded in Q and Q{R/x} = α.(P1{R/x}). If α /∈ A then U(Q{R/x}, A) = U(Q,A) = {α}.
Otherwise, U(Q{R/x}, A) = U(Q,A) = ∅.

Read: Q = α . Q1 or Q = α . Q1. Again we prove only the latter case. In this case x action-
guarded in Q implies x action-guarded in Q1 and Q{R/x} = α.(Q1{R/x}). If α /∈ A then, by
induction hypothesis, U(Q{R/x}, A) = {α} ∪ U(Q1{R/x}, A) = {α} ∪ U(Q1, A). Otherwise,
also by induction hypothesis, U(Q{R/x}, A) = U(Q1{R/x}, A) = U(Q1, A) = U(Q,A).

Sum: Q = Q1 + Q2. In this case x action-guarded in Q implies x action-guarded in both Q1 and
in Q2. Moreover Q{R/x} = Q1{R/x} + Q2{R/x}. By induction hypothesis, we have that
U(Q{R/x}, A) = U(Q1{R/x}, A) ∪ U(Q2{R/x}, A) = U(Q1, A) ∪ U(Q2, A) = U(Q,A).

28

Par: Q = Q1 ‖B Q2. Again, x acion-guarded in Q implies x action-guarded in Q1 and in Q2.
Moreover Q{R/x} = Q1{R/x} ‖B Q2{R/x}. By induction hypothesis U(Q{R/x}, A) =

U(Q1{R/x}, A ∪B) ∪ U(Q2{R/x}, A ∪B) ∪ (U(Q1{R/x}, A) ∩ U(Q2{R/x}, A) ∩B) =

U(Q1, A ∪B) ∪ U(Q2, A ∪B) ∪ (U(Q1, A) ∩ U(Q2, A) ∩B) = U(Q,A).

Rel: Q = Q1[Φ]. In this case x action-guarded in Q implies x action-guarded in Q1 and Q{R/x} =
(Q1{R/x})[Φ]. By induction hypothesis, it is U(Q{R/x}, A) = Φ(U(Q1{R/x}, Φ−1(A))) =
Φ(U(Q1,Φ−1(A))) = U(Q,A).

Rec: Q = rec y.Q1. If x = y then Q{R/x} = Q and the statement follows easily. Assume x 6= y.
Then x action-guarded in Q implies x action-guarded in Q1 and Q{R/x} = rec y.(Q1{R/x}).
By induction hypothesis U(Q{R/x}, A) = U(Q1{R/x}, A) = U(Q1, A) = U(Q,A).

2

By Proposition 5.3 both Proposition A.1 and A.2 also hold for labelled terms.

Proposition A.3 Let Q ∈ L(P̃), A and A′ ⊆ Aτ with A ⊆ A′. Then

1. LE(Q,A′) ⊆ LE(Q,A);

2. UE(Q,A′) ⊆ UE(Q,A);

Proof: We only prove LE(Q,A′) ⊆ LE(Q, A) by induction on Q. The proof for the urgent live
events is similar.

Nil, Var: Q = nilu, Q = xu. In these cases LE(Q,A′) = LE(Q,A) = ∅.
Pref: Q = αu.P1 or Q = αu.P1. In both cases α /∈ A′ and A ⊆ A′ imply α /∈ A and hence

LE(Q,A′) = LE(Q,A) = {u}. Otherwise, i.e. if α ∈ A′, it is ∅ = LE(Q,A′) ⊆ LE(Q,A).

Read: Q = αu1 .u Q1 or Q = αu1 .u Q1. Assume α /∈ A′ and hence (as in the previous case) α /∈ A.
By induction hypothesis, LE(Q,A′) = {u1} ∪ LE(Q1, A

′) ⊆ {u1} ∪ LE(Q1, A) = LE(Q,A).
If α ∈ A′ then, again by induction hypothesis, it is LE(Q,A) = LE(Q1, A

′) ⊆ LE(Q1, A) ⊆
LE(Q,A).

Sum: Q = Q1 +u Q2. By induction hypothesis it is LE(Qi, A
′) ⊆ LE(Qi, A) for i = 1, 2. Thus,

LE(Q1 +u Q2, A
′) = LE(Q1, A

′) ∪ LE(Q2, A
′) ⊆ LE(Q1, A) ∪ LE(Q2, A) = LE(Q1 +u Q2, A).

Par: Q = Q1 ‖u
B Q2. A ⊆ A′ implies A ∪ B ⊆ A′ ∪ B and B\A′ ⊆ B\A. Thus, by induction

hypothesis, LE(Q1, A
′ ∪B) ⊆ LE(Q1, A ∪B), LE(Q2, A

′ ∪B) ⊆ LE(Q2, A ∪B) and, let Aα =
LE(Q1,Aτ\{α}) ∩ LE(Q2,Aτ\{α}),

⋃
α∈B\A′ Aα ⊆

⋃
α∈B\A Aα. Hence LE(Q,A′) ⊆ LE(Q,A).

Rel, Rec: Similar to the previous cases.

2

Proposition A.4 Let Q,R ∈ L(P̃) and A ⊆ Aτ .

1. LE(Q,A) ⊆ LE(Q{|R/x|}, A). If x ∈ X action-guarded in Q then LE(Q{|R/x|}, A) ⊆ LE(Q,A).

2. UE(Q,A) ⊆ UE(Q{|R/x|}, A). If x ∈ X action-guarded in Q then UE(Q{|R/x|}, A) ⊆
UE(Q,A).

3. x action-guarded in Q implies that Q
α−→ if only if Q{|R/x|} µ−→.

29

Proof: We only prove Item 1 and Item 3 (Item 2 is similar to Item 1). To prove Item 1 we proceed
by induction on Q while to prove Item 3 we proceed by induction on the derivations Q

α−→ and
Q{|R/x|} α−→r.

Nil: Q = nilu. In this case x is action-guarded in Q and Q{|R/x|} = nil.

1. LE(Q,A) = ∅ = LE(Q{|R/x|}, A).

3. nilu 6 α−→ and nilu{|Q/x|} = nilu 6 α−→.

Var: Q = yu.

1. LE(Q,A) = ∅ ⊆ LE(Q{|R/x|}). Assume x action-guarded in Q and, hence, x 6= y. Then
Q{|R/x|} = yu and LE(Q{|R/x|}, A) = LE(Q,A) = ∅

3. As in the previous case x action-guarded in Q implies x 6= y and Q{|R/x|} = yu. By
operational rules we have both Q 6 α−→ and Q{|R/x|} 6 α−→.

Pref: Q = µu.P1. Then Q{|R/x|} = µu.(P1{|R/x|}) and x is action-guarded in Q.

1. If µ ∈ {α, α} and α /∈ A then LE(Q, A) = {〈u〉} = LE(Q{|R/x|}). Otherwise, we have
LE(Q,A) = LE(Q{|R/x|}, A) = ∅.

3. Q
α−→ if and only if µ ∈ {α, α} if and only if, by operational rules, Q{|R/x|} α−→.

Read: Q = µu1 .u Q1. Then Q{|R/x|} = µu1 .u (Q1{|R/x|}) and x action-guarded in Q implies x
action-guarded in Q1.

1. If µ ∈ {α, α} and α /∈ A then LE(Q,A) = {〈u1〉} ∪ LE(Q1, A) ⊆ {〈u1〉} ∪ LE(Q1{|R/x|}).
Otherwise, we have LE(Q,A) = LE(Q1, A) ⊆ LE(Q1{|R/x|}, A) ⊆ LE(Q{|R/x|}, A).

3. Q
α−→ if and only if either µ ∈ {α, α} or Q1

α−→ if and only if, by induction hypothesis,
either µ ∈ {α, α} or Q1{|R/x|} α−→. Finally, by operational rules, we can conclude that
Q

α−→ if and only if Q{|R/x|} α−→.

Sum: Q = Q1 +u Q2. In this case Q{|R/x|} = Q1{|R/x|}+u Q2{|R/x|}.

1. By induction hypothesis it is LE(Q,A) = LE(Q1, A) ∪ LE(Q2, A) ⊆ LE(Q1{|R/x|}, A) ∪
LE(Q2{|R/x|}, A) = LE(Q{|R/x|}, A). Moreover, if is x action-guarded in Q then it is
action-guarded in both Q1 and in Q2 and, by induction hypothesis, LE(Q{|R/x|}, A) =
LE(Q1{|R/x|}, A) ∪ LE(Q2{|R/x|}, A) ⊆ LE(Q1, A) ∪ LE(Q2, A) = LE(Q,A).

3. Assume x action-guarded in Q and, hence, in Q1 and in Q2. By operational rules we
have that Q

α−→ if and only if either Q1
α−→ or Q2

α−→ if only if, by induction hypothesis,
either Q1{|R/x|} α−→ or Q2{|R/x|} α−→ if only if, again by operational rules, Q{|R/x|} α−→.

Par: Q = Q1 ‖u
B Q2. In this case Q{|R/x|} = Q1{|R/x|} ‖u

B Q2{|R/x|}.

1. By inductive reasoning as the previous case.

3. Assume x action-guarded in Q (and, hence, x action-guarded in Q1 and in Q2). Consider
the following possible subcases:

- α /∈ B. By operational rules Q
α−→ if and only if either Q1

α−→ or Q2
α−→ if only if,

by induction hypothesis, either Q1{|R/x|} α−→ or Q2{|R/x|} α−→ if only if, again by
operational rules, Q{|R/x|} α−→.

30

- α ∈ B. By operational rules Q
α−→ if and only if Q1

α−→ and Q2
α−→ if only if, by

induction hypothesis, Q1{|R/x|} α−→ and Q2{|R/x|} α−→ if only if, again by operational
rules, Q{|R/x|} α−→.

Rel: Q = Q1[Φu]. In this case Q{|R/x|} = (Q1[Φu]){|R/x|} = (Q1{|R/x|})[Φu]

1. By induction hypothesis it is LE(Q,A) = LE(Q1,Φ−1(A)) ⊆ LE(Q1{|R/x|}, Φ−1(A)) =
LE(Q{|R/x|}, A). If x is action-guarded in Q and, hence in Q1, again by induction hy-
pothesis, we have that LE(Q{|R/x|}, A) = LE(Q1{|R/x|},Φ−1(A)) ⊆ LE(Q1, Φ−1(A)) =
LE(Q,A).

3. Assume x action-guarded in Q and, hence, in Q1. Q
α−→ if only if there exists β ∈ Φ−1(α)

such that Q1
β−→. By induction hypothesis Q1

β−→ if and only if Q1{|R/x|} β−→ if only if,
again by operational rules, Q{|R/x|} α−→.

Rec: Q = rec yu.Q1. If x = y then x is action-guarded in Q, Q{|R/x|} = Q and both statements
follow easily. We can assume x 6= y and Q{|R/x|} = rec yu.(Q1{|R/x|}). By induction
hypothesis:

1. LE(Q,A) = LE(Q1, A) ⊆ LE(Q1{|R/x|}, A) = LE(Q{|R/x|}, A). Now assume x action-
guarded in Q and, hence, in Q1. By induction hypothesis it is LE(Q{|R/x|}, A) =
LE(Q1{|R/x|}, A) ⊆ LE(Q1, A) = LE(Q,A).

3. Assume x action-guarded in Q and, hence, in Q1. Then, by operational rules, Q
αÃ

iff Q1
αÃ iff, by induction hypothesis, Q1{|R/x|} αÃ iff, again by operational rules,

Q{|R/x|} αÃ. Now, let us denote with R1 = unmark(Q1) and S = Q1{|rec yu.R1/y|}.
Then x action-guarded in Q1 implies x action-guarded also in R1 = unmark(Q1) and
S = Q1{|rec yu.R1/y|}. Moreover, x action-guarded in Q1 and Proposition A.7-2 im-
plies unmark(S) = unmark(Q1{|R/x|}) = unmark(Q1){|R/x|} = R1{|R/x|}. As a conse-
quence, S{|R/x|} = (Q1{|rec yu.R1/y|}){|R/x|} = (Q1{|R/x|}){|rec yu.(R1{|R/x|})/y|} =
S{|rec yu.unmark(S)/y|}. Notice that, by operational rules, we have that Q{|R/x|} =
rec yu.(Q1{|R/x|}) = rec yu.S

α7→ if and only if S{|rec yu.unmark(S)/y|} = S{|R/x|} α7→.
Finally, by operational rules, Q

α7→ if only if S
α7→ if only if, since x is action-guarded in

S and by induction hypothesis, S{|R/x|} α7→ if only if (see above) Q{|R/x|} α7→.

2

A.1 clean and unmark Properties

In this appendix section we prove some useful properties of functions clean and unmark. Most of
them are stated for terms in P̃ but, since the “action” of removing urgencies does not depend from
labels we can easily prove that they also hold for terms in L(P̃).

Proposition A.5 Let Q ∈ P̃ and A ⊆ A. Then:

1. unmark(clean(Q, A)) = unmark(Q) ∈ P̃1;

2. Q ∈ P̃1 implies clean(Q,A) = unmark(Q) = Q;

3. U(Q,A) = ∅ implies clean(Q,A) = unmark(Q).

Proof: We prove, by induction on Q ∈ P̃, only the latter item. Items 1 and 2 follow directly from
Definitions 2.3 and 2.4.

31

Nil, Var: Q = nil, Q = x. In these cases U(Q, A) = ∅ and clean(Q, A) = unmark(Q) = Q for any A.

Pref: Q = α.P1 or Q = α.P1 with P1 ∈ P̃1. We only prove the latter case (since the former one
follows easily). Assume U(Q,A) = ∅. Then, by Definition 2.2, we have α ∈ A and hence
clean(Q,A) = α.P1 = unmark(Q).

Read: Q = α.Q1 or Q = α.Q1. Again we only prove the latter case. Assume U(Q, A) = ∅. Then,
by Definition 2.2, we have α ∈ A and U(Q1, A) = ∅. Hence, clean(Q,A) = α . clean(Q1, A) =
α . unmark(Q1) = unmark(Q).

Sum: Q = Q1 + Q2. Assume U(Q,A) = U(Q1, A) ∪ U(Q2, A) = ∅. By induction hypothesis
clean(Q,A) = clean(Q1, A) + clean(Q2, A) = unmark(Q1) + unmark(Q2) = unmark(Q).

Par: Q = Q1 ‖B Q2. Let A1 = A ∪ (B\U(Q2)) and A2 = A ∪ (B\U(Q1))B. We first prove
that U(Q,A) = ∅ (and hence, by Definition 2.2, U(Q1, A ∪ B) = U(Q2, A ∪ B) = ∅ and
U(Q1, A) ∩ U(Q2, A) ∩B = ∅) implies U(Q1, A1) = U(Q2, A2) = ∅.
Assume, toward a contradiction, that α ∈ U(Q1, A1) 6= ∅. and hence, by Proposition A.1-
1., that α /∈ A1 (that is α /∈ A and α /∈ B\U(Q2)). We distinguish two possible subcases:
(i) α /∈ B and (ii) α ∈ B. In the (i)-case, α ∈ U(Q1, A1) and α /∈ A ∪ B implies (by
Proposition A.1-2.) α ∈ U(Q1, A ∪B) = ∅. In the (ii)-case, α ∈ B and α /∈ B\U(Q2) implies
α ∈ U(Q2). Thus α ∈ U(Q1, A1) ∩ U(Q2) ∩ B and α /∈ A implies (again Proposition A.1-2.)
α ∈ U(Q1, A) ∩ U(Q2, A) ∩B = ∅. Similarly we can prove that U(Q2, A2) = ∅.
Finally, by induction hypothesis, U(Q1, A1) = ∅ and U(Q2, A2) = ∅ imply clean(Q,A) =
clean(Q1, A1) ‖B clean(Q2, A2) = unmark(Q1) ‖B unmark(Q2) = unmark(Q).

Rel: Q = Q1[Φ]. U(Q,A) = Φ−1(U(Q1, Φ−1(A))) = ∅ implies U(Q1, Φ−1(A)) = ∅ and, by induction
hypothesis, clean(Q, A) = clean(Q1,Φ−1(A))[Φ] = unmark(Q1)[Φ] = unmark(Q).

Rec: Q = rec x.Q1. By induction hypothesis U(Q,A) = U(Q1, A) = ∅ implies clean(Q,A) =
rec x.clean(Q1, A) = rec x.unmark(Q1) = unmark(Q).

2

Proposition A.6 Let Q ∈ P̃, A,A′ ⊆ A and A′′ ⊆ Aτ . Then:

1. A′ ∩ U(Q,A′′) = ∅ implies clean(Q, A) = clean(Q,A ∪ (A′\A′′));
2. U(clean(Q,A), A′′) = U(Q,A ∪A′′);

3. A(clean(Q,A), A′′) = A(Q,A′′)

Proof: We prove Item 1. and 2. by induction on Q. Item 3. follows directly from Definitions 2.6
and 2.3.

Nil, Var: Q = nil, Q = x. In these cases we have that

1. clean(Q,A) = clean(Q, A ∪ (A′\A′′)) = Q.

2. U(clean(Q,A), A′′) = U(Q,A ∪A′′) = ∅.
Pref: Q = α.P1 or Q = α.P1. We prove only the latter case (the former one follows easily since

Q ∈ P̃1).

1. If α ∈ A′′ then, trivially, α /∈ A′\A′′. If α /∈ A′′, A′ ∩ U(Q,A′′) = A′ ∩ {α} = ∅ implies
α /∈ A′ and, again, α /∈ A′\A′′. In both cases, α ∈ A if and only if α ∈ A∪ (A′\A′′) and,
by Definition 2.3, clean(Q,A) = clean(Q,A ∪ (A′\A′′)).

32

2. We have to consider two possible subcases:

- α ∈ A ⊆ A ∪A′′. U(clean(Q,A), A′) = U(α.Q1, A
′) = ∅ = U(Q,A ∪A′′).

- α /∈ A. In this case clean(Q,A) = Q. Moreover, α /∈ A implies α ∈ A′′ if
and only if α ∈ A ∪ A′′ and, by Definition 2.2, U(Q,A′′) = U(Q,A ∪ A′′). Thus
U(clean(Q,A), A′′) = U(Q,A′′) = U(Q,A ∪A′′).

Read: Q = α . Q1 or Q = α . Q1. Again we only prove the latter case (the former one is easier).

1. Assume A′ ∩U(Q, A′′) = ∅. Since U(Q1, A) ⊆ U(Q,A) it is also A′ ∩U(Q1, A
′′) = ∅ and,

by induction hypothesis, clean(Q1, A) = clean(Q1, A ∪ (A′\A′′)). Moreover, if α /∈ A′′

then α ∈ U(Q,A′′) and A′ ∩ U(Q,A′′) = ∅ implies α /∈ A′ and, hence, α /∈ A′\A′′.
If, otherwise, α ∈ A′′ then it is trivially α /∈ A′\A′′. In both cases we have that
α ∈ A if and only if α ∈ A ∪ (A′\A′′). Thus, by Definition 2.3, we can conclude that
clean(Q,A) = clean(Q, A ∪ (A′\A′′)).

2. We distinguish the following possible subcases:

(a) α ∈ A.
U(clean(Q,A), A′′) = U(α. clean(Q1, A), A′′) = U(clean(Q1, A), A′′) = (by induction
hypothesis) U(Q1, A ∪A′′) = (since α ∈ A ∪A′′) U(α . Q1, A ∪A′′).

(b) α /∈ A and α /∈ A′′.
U(clean(Q,A), A′′) = U(α . clean(Q1, A), A′′) = {α} ∪ U(clean(Q1, A), A′′) = (by
induction hypothesis) {α} ∪ U(Q1, A∪A′′) = (since α /∈ A∪A′′) U(α . Q1, A∪A′′).

(c) α /∈ A and α ∈ A′′. This case is similar to the former one.

Sum: Q = Q1 + Q2.

1. Assume A′ ∩ U(Q, A′′) = ∅. Then, since U(Q,A′′) = U(Q1, A
′′) ∪ U(Q2, A

′′), we also
have A′ ∩ U(Q1, A

′′) = A′ ∩ U(Q2, A
′′) = ∅. By induction hypothesis clean(Q,A) =

clean(Q1, A) + clean(Q2, A) = clean(Q1, A ∪ (A′\A′′)) + clean(Q2, A ∪ (A′\A′′)) =
clean(Q,A ∪ (A′\A′′)).

2. By induction hypothesis it is U(clean(Q, A), A′′) = U(clean(Q1, A) + clean(Q2, A), A′′) =
U(clean(Q1, A), A′′) ∪ U(clean(Q2, A), A′′) = U(Q1, A ∪A′′) ∪ U(Q2, A ∪A′′) =
U(Q,A ∪A′′).

Par: Q = Q1 ‖B Q2. Let A1 = B\U(Q2) and A2 = B\U(Q1).

1. First we prove that A′ ∩ U(Q,A′′) = ∅ implies (A\Ai) ∩ U(Qi, A
′′) = ∅ for i = 1, 2.

Assume, by contradiction, α ∈ (A′\A1) ∩ U(Q1, A
′′). Then α ∈ U(Q1, A

′′) such that
α ∈ A′, α /∈ A1 = B\U(Q2) and α /∈ A′′ (see Proposition A.1-1.). We further distin-
guish the following subcases: α /∈ B and α ∈ B. In the former case, α ∈ U(Q1, A

′′)
and α /∈ A′′ ∪ B implies, Proposition A.1-2., α ∈ U(Q1, A

′′ ∪ B) ⊆ U(Q,A′′). Thus
α ∈ A′ ∩ U(Q,A′′) = ∅. Otherwise, if α ∈ B then α /∈ A1 = B\U(Q2) implies
α ∈ U(Q2) and, hence, α ∈ U(Q1, A

′′) ∩ U(Q2) ∩ B. Finally, α /∈ A′′ and again
Proposition A.1-2. imply α ∈ U(Q1, A

′′) ∩ U(Q2, A
′′) ∩ B ⊆ U(Q,A′′). Again it is

α ∈ A′ ∩ U(Q,A′′) = ∅. We can conclude that (A′\A1) ∩ U(Q1, A
′′) = ∅ and, simi-

larly, that (A′\A2) ∩ U(Q2, A
′′) = ∅. By induction hypothesis it is clean(Qi, A ∪ Ai) =

clean(Qi, A∪Ai∪ ((A′\Ai)\A′′)) = clean(Qi, A∪Ai∪ (A′\A′′))—because for generic sets
A,B and C we have A ∪ ((B\A)\C) = A ∪ (B\C)—for i = 1, 2. Thus, clean(Q,A) =
clean(Q1, A ∪ A1) ‖B clean(Q2, A ∪ A2) = clean(Q1, A ∪ A1 ∪ (A′\A′′)) ‖B clean(Q2, A ∪
A2 ∪ (A′\A′′)) = clean(Q,A ∪ (A′\A′′)).

33

2. Let us denote, for i = 1, 2, Ri = clean(Qi, A ∪ Ai). Then, by Definition 2.3 it is
clean(Q,A) = R1 ‖B R2 and, by induction hypothesis, U(Ri, A

′′ ∪ B) = U(Qi, (A ∪
A1) ∪ (A′′ ∪B)) = U(Qi, (A ∪A′′) ∪B) (since Ai ⊆ B). Again by induction hypothesis,
it is also U(R1, A

′′) ∩ U(R2, A
′′) ∩B = U(Q1, A ∪A1 ∪A′′) ∩ U(Q2, A ∪A2 ∪A′′) ∩B ⊆

U(Q1, A ∪ A′′) ∩ U(Q2, A ∪ A′′) ∩ B (this is because A ∪ A′′ ⊆ (A ∪ A′′) ∪ Ai implies,
by Proposition A.1-3 U(Qi, A ∪ Ai ∪ A′′) ⊆ U(Qi, A ∪ A′′) for i = 1, 2). Moreover,
α ∈ U(Q1, A∪A1∪A′′)∩U(Q2, A∪A2∪A′′)∩B and Proposition A.1-1 implies α /∈ A∪A′′,
and hence (by Proposition A.1-2) α ∈ U(Q1, A ∪ A′′) ∩ U(Q2, A ∪ A′′) ∩ B. This allows
us to conclude that U(R1, A

′′) ∩ U(R2, A
′′) ∩ B = U(Q1, A ∪ A′′) ∩ U(Q2, A ∪ A′′) ∩ B.

Finally, by Definition 2.2, U(clean(Q,A), A′′) = U(R1 ‖B R2, A
′′) = U(R1, A

′′ ∪ B) ∪
U(R2, A

′′ ∪B)∪ (U(R1, A
′′)∩U(R2, A

′′)∩B) = U(Q1, (A∪A′′)∪B)∪U(Q2, (A∪A′′)∪
B) ∪ U(Q1, A ∪A′′) ∩ U(Q2, A ∪A′′) ∩B = U(Q,A ∪A′′).

Rel: Q = Q1[Φ].

1. Let ut assume A′ ∩ U(Q,A′′) = A′ ∩ Φ(U(Q1, Φ−1(A′′))) = ∅ and hence Φ−1(A′) ∩
U(Q1, Φ−1(A′′)) = ∅. By induction hypothesis clean(Q,A) = clean(Q1, Φ−1(A))[Φ] =
clean(Q1, Φ−1(A) ∪ (Φ−1(A′\A′′)))[Φ] = clean(Q1, Φ−1(A ∪ (A′\A′′)))[Φ] = clean(Q,A ∪
(A′\A′′)))

2. Let us denote with R1 = clean(Q1, Φ−1(A)). By induction hypothesis we have that
U(R1, Φ−1(A′′)) = U(Q1, Φ−1(A)∪Φ−1(A′′)) = U(Q1, Φ−1(A∪A′′)). As a consequence,
U(clean(Q,A), A′′) = U(R1[Φ], A′′) = Φ(U(R1, Φ−1(A′′))) = Φ(U(Q1,Φ−1(A ∪ A′′))) =
U(Q,A ∪A′′).

Rec: Q = rec x.Q1.

1. If A′ ∩ U(Q,A′′) = A′ ∩ U(Q1, A
′′) = ∅ then, by induction hypothesis, clean(Q,A) =

rec x.clean(Q1, A) = rec x.clean(Q1, A ∪ (A′\A′′)) = clean(Q, A ∪ (A′\A′′)).
2. U(clean(Q,A), A′′) = U(recx.clean(Q1, A), A′′) = U(clean(Q1, A), A′′) = U(Q1, A∪A′′) =
U(Q,A ∪A′′).

2

Proposition A.7 Let Q,R ∈ P̃, x ∈ X action-guarded in Q and A ⊆ A. Then:

1. clean(Q{R/x}, A) = clean(Q,A){R/x};
2. unmark(Q{R/x}) = unmark(Q){R/x}.

Proof: We prove only Item 1 by induction on Q (Item 2 can be proved similarly).

Nil: Q = nil. Trivially clean(nil{R/x}, A) = clean(nil, A) = nil

Var: Q = y. In this case x action-guarded in Q implies x 6= y and Q{R/x} = y. Similar to the
previous case.

Pref: Q = α.P1 or Q = α.P1. We prove only the latter case (the former is simpler). In this
case, x is action-guarded in Q and Q{R/x} = α.(P1{R/x}). Assume α ∈ A. Then
clean(Q{R/x}, A) = α.(P1{R/x}) = (α.P1){R/x} = clean(Q,A){R/x}. Similarly if α /∈ A
then clean(Q{R/x}, A) = α.(P1{R/x}) = (α.P1){R/x} = clean(Q,A){R/x}.

34

Read: Q = µ . Q1. In this case x is action-guarded in Q if it is so in Q1. Moreover Q{R/x} =
µ . (Q1{R/x}). Let us first consider the case where µ = α and α ∈ A. Then, by Def-
inition 2.3 and induction hypothesis it is clean(Q{R/x}, A) = α . clean(Q1{R/x}, A) =
α . (clean(Q1, A){R/x}) = (α . clean(Q1, A){R/x}) = clean(Q,A){R/x}. If either µ = α
and α /∈ A or µ = α then, similarly, clean(Q{R/x}, A) = µ . clean(Q1{R/x}, A) = µ .
(clean(Q1, A){R/x}) = (µ . clean(Q1, A){R/x}) = clean(Q,A){R/x}.

Sum: Q = Q1 + Q2. In such a case x is action-guarded in Q iff it is action-guarded in Q1 and in
Q2. Moreover, clean(Q{R/x}, A) = clean(Q1{R/x} + Q2{R/x}, A) = clean(Q1{R/x}, A) +
clean(Q2{R/x}, A) = (by induction hypothesis) (clean(Q1, A){R/x})+(clean(Q2, A){R/x}) =
(clean(Q1, A) + clean(Q2, A)){R/x} = clean(Q,A){R/x}.

Par: Q = Q1 ‖B Q2. Assume x action-guarded in Q and, hence, in Q1 and in Q2. Let us denote
with A1 = B\U(Q2{R/x}) and with A2 = B\U(Q1{R/x}). Then x action-guarded in Q1, Q2

and Proposition A.2 imply A1 = B\U(Q2) and A2 = B\U(Q1). By induction hypothesis
we have that clean(Q{R/x}, A) = clean(Q1{R/x}, A ∪ A1) ‖B clean(Q2{R/x}, A ∪ A2) =
(clean(Q1, A ∪A1){R/x}) ‖B (clean(Q2, A ∪A2){R/x}) =

(clean(Q1, A ∪A1) ‖B (clean(Q2, A ∪A2)){R/x} = clean(Q,A){R/x}
Rel: Q = Q1[Φu]. Assume x action-guarded in Q and, hence, in Q1. By induction hypothesis

clean(Q{R/x}, A) = clean((Q1{R/x})[Φ], A) = clean(Q1{R/x}, Φ−1(A))[Φ] =

(clean(Q1,Φ−1(A)){R/x})[Φ] = (clean(Q1,Φ−1(A))[Φ]){R/x} = clean(Q,A){R/x}.
Rec: Q = rec y.Q1. If x = y then x is action-guarded in Q, Q{R/x} = R and the statement

follows easily. Now assume x 6= y. In this case x is action-guarded if it is action-guarded in
Q1 and Q{R/x} = rec y.(Q1{R/x}). Finally, clean(Q{R/x}, A) = rec y.clean(Q1{R/x}, A)
= rec y.(clean(Q1, A){R/x}) = (rec y.clean(Q1, A)){R/x} = clean(Q,A){R/x}, by induction
hypothesis.

2

Proposition A.8 Let Q,Q′ ∈ P̃ and X ⊆ A such that Q
X−→r Q′. Then:

1. A(Q′, A) = U(Q′, A) = A(Q,A) for every A ⊆ Aτ ;

2. unmark(Q) = unmark(Q′);

3. Q = P ∈ P̃1 implies unmark(Q′) = P .

Proof: First, we prove, by induction on Q ∈ P̃, Items 1 and 2.

Var: Q = x. This case is not possible since Q 6 X−→r.

Nil: Q = nil. Q
X−→r nil = Q′. In this case:

1. A(Q′, A) = U(Q′, A) = A(Q,A) = ∅;
2. unmark(Q) = unmark(Q′) = nil.

Pref: Q = α.P1 or Q = α.P1. In both cases Q
X−→r α.P1 = Q′.

1. α /∈ A implies A(Q′, A) = U(Q′, A) = A(Q,A) = {α}. Otherwise, A(Q′, A) =
U(Q′, A) = A(Q, A) = ∅.

2. unmark(Q) = unmark(Q′) = α.P1.

35

Read: Q = α . Q1 or Q = α . Q1. In both cases Q
X−→r Q′ if Q1

X−→r Q′
1 and Q′ = α . Q′

1. By
induction hypothesis:

1. α /∈ A implies A(Q′, A) = {α} ∪ A(Q′
1, A) = {α} ∪ U(Q′

1, A) = U(Q′, A) = {α} ∪
A(Q1, A) = A(Q,A). Otherwise, A(Q′, A) = A(Q′

1, A) = U(Q1, A) = U(Q′, A) =
A(Q1, A) = A(Q,A).

2. unmark(Q) = α . unmark(Q1) = α . unmark(Q′
1) = unmark(Q′).

Sum: Q = Q1 + Q2. By operational semantics Q
X−→r Q′ implies Q1

X−→r Q′
1, Q2

X−→r Q′
2 and

Q′ = Q′
1 + Q′

2. By induction hypothesis:

1. A(Q′, A) = A(Q′
1, A) ∪ A(Q′

2, A) = A(Q1, A) ∪ A(Q2, A) = A(Q,A). Similarly we can
prove that U(Q′, A) = A(Q,A).

2. By induction hypothesis, we have that unmark(Q) = unmark(Q1) + unmark(Q2) =
unmark(Q′

1) + unmark(Q′
2) = unmark(Q′).

Par: Q = Q1 ‖B Q2. Assume Q
X−→r Q′. Then, by operational rules, Qi

Xi−→r Q′
i for i = 1, 2 and

X ⊆ (B ∩ (X1 ∪X2)) ∪ ((X1 ∩X2)\B) and Q′ = clean(Q′
1 ‖B Q′

2).

1. By induction hypothesis and Proposition A.6-3, it is A(Q′, A) = A(Q′
1 ‖B Q′

2, A) =
A(Q′

1, A ∪B) ∪ A(Q′
2, A ∪B) ∪ (A(Q′

1, A) ∩ A(Q′
2, A) ∩B) =

A(Q1, A ∪B) ∪ A(Q2, A ∪B) ∪ (A(Q1, A) ∩ A(Q2, A) ∩B) = A(Q,A).
Similarly we can prove that A(Q′, A) = U(Q′

1 ‖B Q′
2, A). We are done since, by Propo-

sition A.6-2, it is U(Q′
1 ‖B Q′

2, A) = U(clean(Q′
1 ‖B Q′

2), A) = U(Q′, A) .

2. By Proposition A.5-1 unmark(Q′) = unmark(clean(Q′
1 ‖B Q′

2)) = unmark(Q′
1 ‖B Q′

2).
Moreover, by inductuction hypothesis, unmark(Q′

1‖BQ′
2) = unmark(Q′

1)‖Bunmark(Q′
2) =

unmark(Q1) ‖B unmark(Q2) = unmark(Q) and we are done.

Rel: Q = Q1[Φ]. By operational semantics Q
X−→r Q′ implies Q1

X′−→r Q′
1, with X ′ = Φ−1(X ∪

{τ})\{τ}, and Q′ = Q′
1[Φ]. By induction hypothesis:

1. A(Q′, A) = Φ(A(Q′
1,Φ

−1(A)) = Φ(A(Q1, Φ−1(A)) = A(Q,A). Similarly we can prove
that U(Q′, A) = A(Q, A).

2. unmark(Q) = unmark(Q1)[Φ] = unmark(Q′
1)[Φ] = unmark(Q′).

Rec: Q = rec x.Q1. By operational semantics Q
X−→r Q′ implies Q1

X−→r Q′
1 and Q′ = rec x.Q′

1. By
induction hypothesis:

1. A(Q′, A) = A(Q′
1, A) = A(Q1, A) = A(Q,A). Similarly it is U(Q′, A) = A(Q,A).

2. unmark(Q) = rec x.unmark(Q1) = rec x.unmark(Q′
1) = unmark(Q′).

Now we prove Item 3. Assume Q = P ∈ P̃1 and that P
X−→r Q′. Then Item 2 and Proposition

A.5-2 imply unmark(Q′) = unmark(P) = P . 2

Proposition A.9 Let Q ∈ P̃, A,A′ ⊆ A with A ⊆ A′. Then: clean(clean(Q, A), A′) = clean(Q, A′).

Proof: By induction on Q ∈ P̃.
Nil, Var: Q = nil or Q = x. In both cases clean(clean(Q,A), A′) = clean(Q,A′) = Q.

36

Pref: Q = α.P1 or Q = α.P1. We only prove the latter case (the former case can be proved as the
in the Nil-case). If α ∈ A ⊆ A′ then clean(clean(Q,A), A′) = clean(Q,A′) = α.P1. Otherwise,
if α /∈ A then clean(Q,A) = Q and the statement follows easily.

Read: Q = α . Q1 or Q = α . Q1. We only prove the latter case (the former one is easier). If
α ∈ A ⊆ A′ then, induction hypothesis, clean(clean(Q, A), A′) = clean(α . clean(Q1, A), A′) =
α . clean(clean(Q1, A), A′) = α . clean(Q1, A

′) = clean(Q,A′).

If α /∈ A, it is clean(clean(Q,A), A′) = clean(α . clean(Q1, A), A′). Now, α ∈ A′ implies
clean(α . clean(Q1, A), A′) = α . clean(clean(Q1, A), A′) = α . clean(Q1, A

′) = clean(Q,A′)
by induction hypothesis. Finally, if α /∈ A′ we have that clean(α . clean(Q1, A), A′) = α .
clean(clean(Q1, A), A′) = α . clean(Q1, A

′) = clean(Q,A′), again by induction hypothesis.

Sum: Q = Q1 + Q2. In this a case the statement follows easily by induction hypothesis.

Par: Q = Q1 ‖B Q2. Let us denote with A1 = (U(Q1)\U(Q2)) ∩ B ⊆ B\U(Q2). Moreover,
if α ∈ (B\U(Q2))\A1 then α /∈ U(Q1). Thus, B\U(Q2) = A1 ∪ ((B\U(Q2))\A1) where
((B\U(Q2))\A1) ∩ U(Q1) = ∅. Then, by proposition A.6-1., Q′

1 = clean(Q1, A ∪ A1) =
clean(Q1, A ∪ A1 ∪ ((B\U(Q2))\A1)) = clean(Q1, A ∪ (B\U(Q2))). Similarly we can prove
that Q′

2 = clean(Q2, A ∪A2) = clean(Q1, A ∪ (B\U(Q1))) where A2 = (U(Q2)\U(Q1)) ∩B ⊆
B\U(Q1). By Definition 2.3, it is clean(Q,A) = Q′

1 ‖B Q′
2.

Now let A′1 = B\U(Q′
2) and A′2 = B\U(Q′

1) Since, by Propositions A.6-2. and A.1-4.,
U(Q′

1) = U(Q1, A∪A1) ⊆ U(Q1) and U(Q′
2) = U(Q2, A∪A2) ⊆ U(Q2), it is A1 ⊆ B\U(Q2) ⊆

B\U(Q′
2) = A′1 and similarly A2 ⊆ A′2. Hence A∪Ai ⊆ A′ ∪A′i for i = 1, 2 and, by induction

hypothesis, clean(Q′
i, A

′ ∪ A′i) = clean(clean(Qi, A ∪ Ai), A′ ∪ A′i) = clean(Qi, A
′ ∪ A′i) for

i = 1, 2. By Definition 2.3 we have that clean(clean(Q,A), A′) = clean(Q′
1 ‖B Q′

2, A
′) =

clean(Q′
1, A

′ ∪A′1) ‖B clean(Q′
2, A

′ ∪A′2) = clean(Q1, A
′ ∪A′1) ‖B clean(Q2, A

′ ∪A′2).

Due to the fact that (exactly as above) clean(Q1, A
′ ∪ A1) = clean(Q1, A

′ ∪ (B\U(Q2))) and
clean(Q2, A

′ ∪ A2) = clean(Q2, A
′ ∪ (B\U(Q1))), again by By Definition 2.3, it still remains

to prove that clean(Q1, A
′∪A′1) = clean(Q1, A

′∪A1) and, similarly, that clean(Q2, A
′∪A′2) =

clean(Q2, A
′ ∪A2).

To this aim, let us consider a given α ∈ A′1\A1. α ∈ A′1 implies α ∈ B and α /∈ U(Q′
2). So,

α ∈ B and α /∈ A1 implies either (1) α /∈ U(Q1) or (2) both α ∈ U(Q1) and α ∈ U(Q2).
In this latter case α ∈ U(Q2) and α /∈ U(Q′

2) = U(Q2, A ∪ A2) = U(Q2)\(A ∪ A2) implies
α ∈ A ∪A2 and hence α ∈ A (this is because α ∈ U(Q1) and α ∈ U(Q2) implies α /∈ A2).

Summing up, α ∈ A′1\A1 implies either (1) α /∈ U(Q1) or (2) α ∈ A. As a consequence,
A′1 = A1 ∪ {α ∈ (A′1\A1) |α /∈ U(Q1)} ∪ {α ∈ (A′1\A1) |α ∈ A} and, since A ⊆ A′, A′ ∪A′1 =
A′ ∪A1 ∪ {α ∈ (A′1\A1) |α /∈ U(Q1)}. Finally, since all actions in {α ∈ (A′1\A1) |α /∈ U(Q1)}
are sure not urgent in Q1, again by Proposition A.6-2, we can conclude that clean(Q1, A

′ ∪
A1) = clean(Q1, A

′ ∪ A′1). With similar arguments we can prove that clean(Q2, A
′ ∪ A2) =

clean(Q2, A
′ ∪A′2) and, hence, we are done.

Rel: Q = Q1[Φ]. In this case we have that clean(Q,A) = clean(Q1, Φ−1(A))[Φ] = Q′
1[Φ] and

clean(clean(Q,A), A′) = clean(Q′
1[Φ], A′) = clean(Q′

1, Φ
−1(A′))[Φ]. Since A ⊆ A′ implies

Φ−1(A) ⊆ Φ−1(A′), by induction hypothesis it is clean(Q′
1,Φ

−1(A′)) = clean(Q1, Φ−1(A′)).
Finally clean(clean(Q,A), A′) = clean(Q1, Φ−1(A′)[Φ] = clean(Q,A′).

Rec: Q = recx.Q1. By induction hypothesis clean(clean(Q1, A), A′) = clean(Q1, A
′). Thus it is also

clean(clean(Q,A), A′) = rec x.clean(clean(Q1, A), A′) = rec x.clean(Q1, A
′) = clean(Q,A′).

2

37

Proposition A.10 Let Q ∈ L(P̃), A ⊆ A and A′ ⊆ Aτ . Then:

1. LE(clean(Q, A), A′) = LE(Q,A′);

2. A ⊆ A′ implies UE(clean(Q,A), A′) = UE(Q,A′).

Proof: We prove, by induction on Q ∈ L(P̃), only the Items 2 and 3. Item 1 follows directly since
cleaning inactive urgencies cannot affect the set of live events of a term Q (see Definitions 2.3 and
5.7 for more details).

Nil, Var: Q = nilu, Q = xu. In these cases UE(clean(Q,A), A′) = UE(Q,A′) = ∅.
Pref: Q = αu.P1 or Q = αu.P1. We prove only the latter case (the former is similar to the previous

cases). Consider the following cases:

- α ∈ A ⊆ A′. UE(clean(Q,A), A′) = UE(αu.P1, A
′) = ∅ = UE(Q,A′).

- α /∈ A. In this case clean(Q,A) = Q and the statement follows easily.

Read: Q = αu1 .u Q1 or Q = αu1 .u Q1. We prove only the latter case (the former one can be
proved similarly). Consider the following cases:

- α ∈ A ⊆ A′. UE(clean(Q,A), A′) = UE(αu1 .u clean(Q1, A), A′) = UE(clean(Q1, A), A′) =
(by induction hypothesis) UE(Q1, A

′) = UE(αu1 .u Q1, A
′) = UE(Q,A′).

- α /∈ A and α /∈ A′. In this case, UE(clean(Q,A), A′) = UE(αu1 .u clean(Q1, A), A′) =
{〈u1〉} ∪UE(clean(Q1, A), A′) = (by induction hypothesis) {〈u1〉} ∪UE(Q1, A

′) = (since
α /∈ A′) UE(αu1 .u Q1, A

′) = UE(Q,A′).

- α /∈ A and α ∈ A′ can be proved as the former case.

Sum: Q = Q1 +u Q2. Then, by induction hypothesis, UE(clean(Q,A), A′) = UE(clean(Q1, A) +u

clean(Q2, A), A′) = UE(clean(Q1, A), A′) ∪ UE(clean(Q2, A), A′) = UE(Q1, A
′) ∪ UE(Q2, A

′) =
UE(Q,A′).

Par: Q = Q1 ‖u
B Q2. Let A1 = B\U(Q2), A2 = B\U(Q1) and Ri = clean(Qi, A ∪ Ai) for i = 1, 2.

By Definitions 2.3 and 5.8, we have that clean(Q,A) = R1 ‖u
B R2 = R and UE(R, A′) =

UE(R1, A
′ ∪ B) ∪ UE(R2, A

′ ∪ B) ∪ (∪α∈(B\A′) Rα) where, for each α ∈ B\A′, we denote
with Rα = UE(R1,Aτ\{α}) × UE(R2,Aτ\{α}). In the following, given α ∈ B\A′, we use
Qα to denote the set UE(Q1,Aτ\{α}) × UE(Q2,Aτ\{α}). Since A ∪ Ai ⊆ A′ ∪ B, then by
induction hypothesis it is UE(Ri, A

′ ∪ B) = UE(clean(Qi, A ∪ Ai), A′ ∪ B) = UE(Qi, A
′ ∪ B),

for i = 1, 2. Thus, again due to Definition 5.8, to prove our statement it still remains to
prove that ∪α∈(B\A′) Rα = ∪α∈(B\A′) Qα. Let α ∈ B\A′ and consider the following possible
subcases:

- α ∈ A1 = B\U(Q2). In this case α /∈ U(Q2) and U(Q2,Aτ\{α}) ⊆ U(Q2) (see
Proposition A.1-3) implies α /∈ U(Q2,Aτ\{α}). Moreover, if there exists some β such
that β ∈ U(Q2,Aτ\{α}) then, by Proposition A.1-1, it is β /∈ Aτ\{α} and, hence,
β = α. We can conclude that U(Q2,Aτ\{α}) = ∅ and hence (see Proposition 5.11-3)
UE(Q2,Aτ\{α}) = ∅. Thus Qα = UE(Q1,Aτ\{α})× UE(Q2,Aτ\{α}) = ∅.
Moreover, since U(R2) = U(clean(Q2, A ∪ A2)) = U(Q2, A ∪ A2) ⊆ U(Q2) (see Proposi-
tions A.6-2 and A.1-3) it is also α /∈ U(R2). As above we have that U(R2,Aτ\{α}) = ∅,
UE(R2,Aτ\{α}) = ∅ and Rα = UE(R1,Aτ\{α})× UE(R2,Aτ\{α}) = ∅.

- α ∈ A2. As in the previous case we can prove that Qα = Rα = ∅.

38

- α /∈ A1 and α /∈ A2. In this case α ∈ B\A′ implies α /∈ A ⊆ A′ and, hence, α /∈ A ∪ Ai

for i = 1, 2. Thus A ∪ Ai ⊆ Aτ\{α} and, by induction hypothesis, UE(Ri,Aτ\{α}) =
UE(Qi,Aτ\{α}), for i = 1, 2. Hence Rα = Qα.

This allows us to conclude that ∪α∈B\A′ Rα = ∪α∈B\A′ Qα and, hence, we are done.

Rel: Q = Q1[Φu]. Let us assume A ⊆ A′ and, hence, Φ−1(A) ⊆ Φ−1(A′). By induction hypothesis
UE(clean(Q,A), A′) = UE(clean(Q1,Φ−1(A))[Φu], A′) = UE(clean(Q1,Φ−1(A)), Φ−1(A′)) =
UE(Q1, Φ−1(A′)) = UE(Q,A′).

Rec: Q = rec xu.Q1. By induction hypothesis we have that UE(clean(Q,A), A′) =

UE(rec xu.clean(Q1, A), A′) = UE(clean(Q1, A), A′) = UE(Q1, A
′) = UE(Q,A′).

2

Lemma A.11 Let Q ∈ L(P̃). Then UE(clean(Q), A) = UE(Q,A) for every A ⊆ Aτ .

Proof: This follows directly from Proposition A.10-2 2

39

B A Proof of Proposition 2.10

This section is devoted to proving Proposition 2.10.

Proposition 2.10 Let Q,∈ P̃ be a clean process. Then:

1. Q
µ−→ Q′ and Q

X−→r Q′ implies Q′ clean;

2. U(Q) = ∅ implies Q ∈ P̃1.

Proof: We first prove Item 2. By Proposition A.5-3., U(Q) = ∅ implies Q = clean(Q) = unmark(Q)
and, hence Q ∈ P̃1.

Let us prove Item 1. If Q
µÃ Q′ then Q′ = Q implies trivially Q′ clean. So, it remains to prove

our statement when (i) Q
µ7→ Q′ and (ii) Q

X−→r Q′. In the former case we proceed by induction on
the derivation Q

µ7→ Q′, in the latter one by induction on Q.

Var: Q = x. This case is not possible since (i) Q 6 µ7→ and (ii) Q 6 X−→r.

Nil: Q = nil, Q = x. (i) Q 6 µ7→ and (ii) Q
X−→r nil with nil clean.

Pref: Q = α.P1 or Q = α.P1 with P1 ∈ P̃1. In both cases Q is clean. Moreover:

(i) Q
µ7→ Q′ implies µ = α and Q = P1 ∈ P̃1 and, hence, clean.

(ii) Q
X−→r α.P1 = Q′ with clean(α.P1) = α.P1 and, hence Q′ clean.

We only prove the latter case (since the former one follows easily). Assume U(Q,A) = ∅.
Then, by Definition 2.2, we have α ∈ A and hence clean(Q,A) = α.P1 = unmark(Q).

Read: Q = α . Q1 or Q = α . Q1. In both cases Q clean implies Q1 clean.

(i) Q
µ7→ Q′ implies Q1

µ7→ Q′ and the statement follows by induction hypothesis.

(ii) Q
X−→r α . Q′

1 = Q′ if Q1
X−→r Q′

1. By induction hypothesis clean(Q′) = α . clean(Q′
1) =

α . Q′
1 = Q′, that is Q′ is clean.

Sum: Q = Q1 + Q2. In this case if Q is clean then both Q1 and Q2 are clean.

(i) Q
µ7→ Q′ if either Q1

µ7→ Q′ or Q2
µ7→ Q′. In both cases, the statement follows by induction

hypothesis.

(ii) Q
X−→r Q′

1 + Q′
2 = Q′ if Qi

X−→r Q′
i for i = 1, 2. By induction hypothesis Q′

1 and Q2 are
clean. Thus, clean(Q′) = clean(Q′

1) + clean(Q′
2) = Q′

1 + Q′
2 = Q′. Again Q′ is clean.

Par: Q = Q1 ‖B Q2. By operational rules, if (i) Q
µ7→ Q′ or (ii) Q

X−→r Q′ then there exists a proper
R such that Q′ = clean(R). By Proposition A.9, clean(Q′) = clean(clean(R)) = clean(R) = Q′.
Also in this case Q′ is clean.

Rel: Q = Q1[Φ]. Similar to the Read-case

Rec: Q = rec x.Q1. Again Q clean implies Q1 clean.

(i) Let P1 = unmark(Q1), P = rec x.P1 and S = Q1{P/x}. x action-guarded in Q1 and
Q1 clean implies clean(S) = clean(Q1){P/x} = Q1{P/x} = S (see Proposition A.7-1.).
By operational rules, Q

µ7→ Q′ if S
µ7→ Q′ and, since S is clean, the statement follows by

induction hypothesis.

40

(ii) Q
X−→r rec x.Q′

1 = Q′ if Q1
X−→r Q′

1. By induction hypothesis Q′
1 is clean. Thus,

clean(Q′) = rec x.clean(Q′
1) = rec x.Q′

1 = Q′. Again Q′ is clean.

2

41

C Proofs of Proposition 4.2 and Theorem 4.3

As usual, some preliminary results are needed.

Proposition C.1 [[Q]] 6 αÃ for all read-guarded Q ∈ S̃.

Proof: By induction on Q ∈ S̃
Nil, Var, Pref: Q = nil, Q = x or Q = µ.P . By Definition 4.1, it is [[Q]] = nil, [[Q]] = x or

[[Q]] = µ.[[P]]. In all of such cases [[Q]] 6 αÃ.

Read: Q = {µ1, . . . , µn} . Q1. This case is not possible since Q is not read-guarded.

Sum: Q = Q1 + Q2 with both Q1 and Q2 read-guarded. By induction hypothesis, [[Q1]] 6 αÃ and
[[Q2]] 6 αÃ. Thus, by operational rules, [[Q]] = [[Q1]] + [[Q2]] 6 αÃ.

Par: Q = Q1 ‖B Q2 with both Q1 and Q2 read-guarded. The statement follows easily by induction
hypothesis as in the previous case.

Rel: Q = Q1[Φ] with Q1 read-guarded. By induction hypothesis, [[Q1]] 6 αÃ. By operational rules we
can conclude that [[Q]] 6 αÃ.

Rec: Similar to the previous case.

2

Proposition C.2 Let Q,R ∈ S̃ and x ∈ X action-guarded in Q. If Q is read-guarded, then so is
Q{R/x}.

Proof: By induction on Q ∈ S̃.
Nil: Q = nil. Then Q = Q{R/x} = nil is read-guarded.

Var: Q = y. If x is action-guarded in Q, then x 6= y and Q{R/x} = y is trivially read-guarded.

Pref: Q = µ.P . In this case it is Q{R/x} = µ.(P{R/x}) and, hence, read-guarded.

Read: Q = {µ1, . . . , µn} . Q1. This case is not possible, since Q is not read-guarded.

Sum: Q = Q1+Q2 with Qi read-guarded and x action-guarded in Qi, for i = 1, 2. By induction hy-
pothesis, Q1{R/x} and Q2{R/x} are read-guarded. Hence, Q{R/x} = Q1{R/x}+ Q2{R/x}
is read-guarded.

Par: Q = Q1 ‖B Q2 with Qi read-guarded and x action-guarded in Qi, for i = 1, 2. The statement
follows by induction hypothesis as in the previous case.

Rel: Q = Q1[Φ] with Q1 read-guarded and x action-guarded in Q1. By induction hypothesis,
Q1{R/x} and hence Q{R/x} = (Q1{R/x})[Φ] is read-guarded.

Rec: Q = rec y.Q1 with Q1 read-guarded and x action-guarded in Q1. We consider two subcases:

- x = y. In this case Q{R/x} = Q is read-guarded.

- x 6= y. By induction hypothesis we have Q1{R/x} and hence Q{R/x} = rec y.Q1{R/x}
read-guarded.

42

2

Proposition C.3 Let Q′ be a subterm of Q ∈ S̃. If Q is read-proper, then so is Q′; if x is
read-guarded in Q, then it is also read-guarded in Q′.

Proof: It can be easily proven by induction on Q ∈ S̃. 2

Proposition C.4 Let Q,R ∈ S̃ be read-proper and x ∈ X be read-guarded in Q. Then: Q{R/x}
is read-proper.

Proof: By induction on Q ∈ S̃. We repeatedly apply Proposition C.3 in the following without
mentioning this explicitly.

Nil: Q = nil. Q{R/x} = Q = nil and the statement follows easily.

Var: Q = y. If x 6= y then Q{R/x} = y. If x = y then Q{R/x} = R. In both cases Q{R/x} is
read-proper.

Pref: Q = µ.P with P read-proper and x read-guarded in P . By induction hypothesis, we have
P{R/x} and Q{R/x} = µ.(P{R/x}) read-proper.

Read: Q = {µ1, . . . , µn} . Q1 with Q1 both read-guarded and read-proper. In this case, x read-
guarded in Q implies that x is both action-guarded and read-guarded in Q1. By induc-
tion hypothesis, Q1, R read-proper and x read-guarded in Q1 implies Q1{R/x} read-proper.
Moreover, Q1 read-guarded and x action-guarded in Q1 implies Q1{R/x} read-guarded (by
Proposition C.2). By definition of read-properness we can conclude that Q{R/x} is both
read-guarded and read-proper.

Sum: Q = Q1 + Q2 with Q1, Q2 read-proper and x read-guarded in Q1 and in Q2. By induction
hypothesis, it is Q1{R/x}, Q2{R/x} read-proper. Hence Q{R/x} = Q1{R/x}+ Q2{R/x} is
read-proper.

Par: Q = Q1 ‖B Q2 with Q1, Q2 read-proper and x read-guarded in Q1 and in Q2. The statement
follows by induction hypothesis as in the previous case.

Rel: Q = Q1[Φ] with Q1 read-proper and x read-guarded in Q1. By induction hypothesis, we have
Q{R/x} = (Q1{R/x})[Φ] read-proper.

Rec: Q = rec y.Q1 with Q1 read-proper and x read-guarded in Q1. We distinguish two possible
subcases. If x = y then Q{R/x} = Q which is trivially read-proper. Otherwise, if x 6= y,
then Q{R/x} = recy.(Q1{R/x}) with Q1{R/x} read-proper by induction hypothesis. Again,
we can conclude that Q{R/x} is read-proper.

2

Proposition C.5 Let Q ∈ S̃ and A ⊆ A. Then:

1. U([[Q]], A) = U(Q,A);

2. unmark([[Q]]) = [[unmark(Q)]];

3. clean([[Q]], A) = [[clean(Q, A)]].

43

Proof: Item 1 follows easily by Definitions 2.2, 3.2 and 4.1. The proof of Item 2 is similar to that
of Item 3. So, we only prove the latter item by induction on Q ∈ S̃.

Nil, Var: Q = nil or Q = x. In both cases, clean([[Q]], A) = [[clean(Q,A)]] = Q.

Pref: Q = α.P or Q = α.P . We prove only the latter case (the former one is easier). Consider the
following possible cases:

- α ∈ A. clean([[Q]], A) = clean(α.[[P]], A) = α.[[P]] = [[α.P]] = [[clean(α.P,A)]].

- α /∈ A. clean([[Q]], A) = clean(α.[[P]], A) = α.[[P]] = [[α.P]] = [[clean(α.P,A)]].

Read: Q = {µ1, . . . , µn} . Q1. Let {ν1, . . . , νn} the subset of Aτ ∪ Aτ such that for each i ∈ [1, n],
νi = α if µ = α and α ∈ A; νi = µi otherwise. By Definition 4.1, it is clean([[Q]], A) =
clean(µ1 µn . [[Q1]], A) = ν1 νn . clean([[Q1]], A) = ν1 νn . [[clean(Q1, A)]] (by
induction hypothesis) = [[{ν1, . . . , νn} . clean(Q1, A)]] = [[clean(Q,A)]].

Sum: Q = Q1+Q2. By Definitions 3.3 and 4.1, we have that clean([[Q]], A) = clean([[Q1]]+[[Q2]], A) =
clean([[Q1]], A) + clean([[Q2]], A) By induction hypothesis it is clean([[Qi]], A) = [[clean(Qi, A)]],
for i = 1, 2. Finally: clean([[Q]], A) = clean([[Q1]], A) + clean([[Q2]], A) = [[clean(Q1, A)]] +
[[clean(Q2, A)]] = [[clean(Q1 + Q2, A)]] = [[clean(Q,A)]].

Par: Q = Q1 ‖B Q2. Let A1 = B\U([[Q2]]) = B\U(Q2) and A2 = B\U([[Q1]]) = B\U(Q1) by
Item 1. By Definitions 3.3 and 4.1, we have that clean([[Q]], A) = clean([[Q1]] ‖B [[Q2]], A) =
clean([[Q1]], A ∪ A1) ‖B clean([[Q2]], A ∪ A2) = [[clean(Q1, A ∪ A1)]] ‖B [[clean(Q2, A ∪ A2)]] =
[[clean(Q1, A ∪A1) ‖B clean(Q2, A ∪A2)]] = [[clean(Q, A)]] by induction hypothesis.

Rel: Q = Q1[Φ]. In this case, again by Definitions 3.3 and 4.1, clean([[Q]], A) = clean([[Q1]][Φ], A) =
clean([[Q1]], Φ−1(A))[Φ] = [[clean(Q1, Φ−1(A))]][Φ] = [[clean(Q1, Φ−1(A))[Φ]]] = [[clean(Q,A)]].

Rec: Q = rec x.Q1. By induction hypothesis (and by Definitions 3.3 and 4.1), clean([[Q]], A) =
clean(rec x.[[Q1]], A) = rec x.clean([[Q1]], A) = rec x.[[clean(Q1, A)]] = [[rec x.clean(Q1, A)]] =
[[clean(Q, A)]].

2

Proposition 4.2 Let Q ∈ S̃ be read-proper and assume Q
α−→ Q′ (Q X−→r Q′). Then Q′ is read-

proper.

Proof: If Q
X−→r Q′ then unmark(Q) = unmark(Q′) (Q′ is Q with all activated actions marked as

urgent) and we are done since Q read-proper implies Q′ read-proper. We prove that if Q
α−→ Q′

then Q′ is read proper by induction on the length of the derivation Q
α−→ Q′.

Nil, Var: Q = nil or Q = x. These cases are not possible since Q 6 α−→ for any α.

Pref: Q = µ.P with P read-proper. By the operational semantics, Q
α−→ Q′ if µ ∈ {α, α} and

Q = P (and, hence, read-proper).

Read: Q = {µ1, . . . , µn} . Q1 with Q1 read-proper. If Q
α−→ {µ1, . . . , µn} . Q = Q′ because there

exists some µi ∈ {α, α}, then trivially Q′ is read-proper. Otherwise, Q
α−→ Q′ because of

Q1
α−→ Q′ and, by induction hypothesis, Q′ read-proper.

Sum: Q = Q1 + Q2 with Q1 and Q2 read-proper. In this case Q
α−→ Q′ if either Q1

α−→ Q′ or
Q2

α−→ Q′. In both cases, by induction hypothesis, Q′ is read-proper.

44

Par: Q = Q1 ‖B Q2 with Q1, Q2 read-proper. Assume Q
α−→ Q′ and consider the following possible

subcases:

- α /∈ B, Q1
α−→ Q′

1 and Q′ = clean(Q′
1 ‖B Q2). Q1 read-proper and Q1

α−→ Q′
1 implies by in-

duction hypothesis Q′
1 read-proper. Finally, Q′

1 and Q2 read-proper implies Q′
1 ‖B Q2 and

hence clean(Q′
1 ‖B Q2) read-proper (as above, we have that unmark(clean(Q′

1 ‖B Q2)) =
unmark(Q′

1 ‖B Q2)).

- either α /∈ B, Q2
α−→ Q′

2 and Q′ = clean(Q1 ‖B Q′
2) or α ∈ B, Qi

α−→ Q′
i for i = 1, 2, and

Q′ = clean(Q′
1 ‖B Q′

2). These cases can be proven as the previous one.

Rel: Q = Q1[Φ] with Q1 read-proper. In this case, Q
α−→ Q′

1[Φ] = Q′ if there exists β ∈ Φ−1(α)
such that Q1

α−→ Q′
1. By induction hypothesis, Q′ = Q′

1[Φ] is read-proper.

Rec: Q = rec x.Q1 with Q1 read-proper. In this case Q
α−→ Q′ if Q{rec x.unmark(Q1)/x} α−→ Q′.

Moreover, Q read-proper implies Q1 and recx.unmark(Q1) read-proper. Then, x read-guarded
in Q1 and Proposition C.4 imply Q{rec x.unmark(Q1)/x} and (by induction hypothesis) Q′

read-proper.

2

We subdivide Theorem 4.3 into the following two propositions, which we prove separately.

Proposition C.6 For all read-proper Q ∈ S̃:

1. Q
α−→ Q′ implies [[Q]] α−→ [[Q′]];

2. [[Q]] α−→ Q′′ implies Q
α−→ Q′ with [[Q′]] = Q′′.

Proof: We prove these statements by induction on the length of derivations Q
α−→ Q′ and [[Q]] α−→

Q′′. We proceed by a case analysis on the structure of Q.

Nil, Var: Q = [[Q]] = nil or Q = [[Q]] = x. Not possible since Q 6 α−→ for any α.

Pref: Q = µ.P and [[Q]] = µ.[[P]].

1. If Q
α−→ Q′ then µ ∈ {α, α} and Q′ = P . Moreover, [[Q]] = µ.[[P]] α−→ [[P]].

2. Similar to the previous one.

Read: Q = A . Q1 with A = {µ1, . . . , µn}. In this case [[Q]] = µ1 µn . [[Q1]].

1. If Q
α−→ A.Q1 then there exists some µi ∈ A such that µi ∈ {α, α}. So, by rule Readr1 ,

µi µn . [[Q1]]
αÃ µi µn . [[Q1]] and, by repeated applications of rule Readr2 ,

[[Q]] = µ1 µi [[Q]] αÃ µ1µi [[Q1]]. If Q
α−→ Q′ because of Q1

α−→ Q′ then
[[Q1]]

α−→ [[Q′]] by induction hypothesis. Since, Q read-proper implies Q1 is read-guarded,
we even have (by Proposition C.1) [[Q1]]

α7→ [[Q′]]. We are done by repeated applications
of Reado.

2. If [[Q]] = µ1 µn . [[Q1]]
α−→ Q′′ we have either {α, α} ∩A 6= ∅ (i.e. there exists some

µi ∈ A such that µi ∈ {α, α}) and Q′′ = [[Q]] and we are done similarly to the previous
case; or (again by Proposition C.1, since Q1 is read-guarded) [[Q1]]

α7→ Q′′. Then, by
induction hypothesis Q1

α−→ Q′ and, by operational rules, Q
α−→ Q′ with [[Q′]] = Q′′.

Sum: Q = Q1 + Q2 with Q1 and Q2 read-proper and read-guarded.

45

1. Assume that Q
α−→ Q′ because of Q1

α−→ Q′ (if Q
α−→ Q′ since Q2

α−→ Q′, the proof is
symmetric). By induction hypothesis, we have [[Q1]]

α−→ [[Q′]]. Moreover, since Q1 is read-
guarded, also [[Q1]]

α7→ [[Q′]] (again by Proposition C.1). Thus, [[Q]] = [[Q1]]+[[Q2]]
α−→ [[Q′]].

2. Since Q1 and Q2 are read-guarded, we have Q1 6 αÃ and Q2 6 αÃ again by Proposition C.1.
Thus, [[Q]] = [[Q1]] + [[Q2]]

α−→ Q′′ if either [[Q1]]
α7→ Q′′ or [[Q2]]

α7→ Q′′. By induction
hypothesis, it is either Q1

α−→ Q′ or Q2
α−→ Q′ with [[Q′]] = Q′′. By operational rules, we

have Q
α−→ Q′.

Par: Q = Q1 ‖B Q2 with Q1 and Q2 read-proper.

1. Assume Q
α−→ Q′ and consider the following possible subcases:

- α /∈ B, Q1
α−→ Q′

1 and Q′ = clean(Q′
1 ‖B Q2). If Q1

α−→ Q′
1 then, by induc-

tion hypothesis, [[Q1]]
α−→ [[Q′

1]] and [[Q]] = [[Q1]] ‖B [[Q2]]
α−→ clean([[Q′

1]] ‖B [[Q2]]) =
clean([[Q′

1 ‖B Q2]]) = [[clean(Q′
1 ‖B Q2)]] = [[Q′]] by Proposition C.5-3.

- either α /∈ B, Q2
α−→ Q′

2 and Q′ = clean(Q1 ‖B Q′
2) or α ∈ B, Qi

α−→ Q′
i, for i = 1, 2,

and Q′ = clean(Q′
1 ‖B Q′

2). Both these cases can be proved as the previous one.

2. Assume [[Q]] = [[Q1]] ‖B [[Q2]]
α−→ Q′′ and consider the following possible subcases:

- α /∈ B, [[Q1]]
α−→ Q′′

1 and Q′′ = clean(Q′′
1 ‖B [[Q2]]). By induction hypothesis, [[Q1]]

α−→
Q′′

1 implies Q1
α−→ Q′

1 with [[Q′
1]] = Q′′

1. Thus, Q
α−→ clean(Q′

1 ‖B Q2) = Q′.
Moreover, Q′′ = clean(Q′′

1 ‖B [[Q2]]) = clean([[Q′
1]] ‖B [[Q2]]) = clean([[Q′

1 ‖B Q2]]) =
[[clean(Q′

1 ‖B Q2)]] = [[Q′]], by Proposition C.5-3.
- either α /∈ B, [[Q2]]

α−→ Q′′
2 and Q′′ = clean([[Q1]] ‖B Q′′

2) or α ∈ B, [[Qi]]
α−→ Q′′

i , for
i = 1, 2, and Q′′ = clean(Q′′

1 ‖B Q′′
2). These cases can be proved as the previous one.

Rel: Q = Q1[Φ] with Q1 read-proper.

1. Q
α−→ Q′ if there exists β ∈ Φ−1(α) such that Q1

β−→ Q′
1 and Q′ = Q′

1[Φ]. By induction

hypothesis, [[Q1]]
β−→ [[Q′

1]] and, hence [[Q]] = [[Q1]][Φ] α−→ [[Q′
1]][Φ] = [[Q′]].

2. [[Q]] = [[Q1]][Φ] α−→ Q′′
1[Φ] = Q′′ if there exists β ∈ Φ−1(α) such that [[Q1]]

β−→ Q′′
1. By

induction hypothesis, Q1
β−→ Q′

1 with Q′′
1 = [[Q′

1]]. Thus, Q
α−→ Q′

1[Φ] = Q′. Moreover,
[[Q′]] = [[Q′

1]][Φ] = Q′′
1[Φ] = Q′′.

Rec: Q = rec x.Q1 with Q1 read-proper. Let us define P = rec x.unmark(Q1). By an easy
induction on Q1 we can prove that [[Q1{P/x}]] = [[Q1]]{[[P]]/x} and thus [[Q1{P/x}]] =
[[Q1]]{rec x.[[unmark(Q1)]]/x} = [[Q1]]{rec x.unmark([[Q1]])/x} by Proposition C.5-2.

1. We have Q
α−→ Q′ since Q1{P/x} α−→ Q′. By induction hypothesis, [[Q1{P/x}]] =

[[Q1]]{rec x.unmark([[Q1]])/x} α−→ [[Q′]]. By operational rules [[Q]] = rec x.[[Q1]]
α−→ [[Q′]].

2. By the operational rules, [[Q]] α−→ Q′′ if [[Q1]]{recx.unmark([[Q1]])/x} = [[Q1{P/x}]] α−→ Q′′.
By induction hypothesis, we have Q1{P/x} α−→ Q′ with Q′′ = [[Q′]]. Finally, Q1{P/x} α−→
Q′ implies Q

α−→ Q′.

2

Proposition C.7 For all read-proper Q ∈ S̃:

1. Q
X−→r Q′ implies [[Q]] X−→r [[Q′]];

46

2. [[Q]] X−→r Q′′ implies Q
X−→r Q′ with [[Q′]] = Q′′.

Proof: We prove these statements by induction on Q. We only prove some significant cases; the
other ones follow easily by induction hypothesis.

Nil: Q = nil. Trivial, since Q = nil = [[Q]] X−→r nil.

Var: Q = x. Not possible since neither Q nor [[Q]] can perform any X-step.

Pref: Q = α.P or Q = α.P We prove only the latter case (the former is easier).

1. Q
X−→r Q′ implies α /∈ X ∪ {τ} and Q′ = α.P . By the operational rules, if α /∈ X ∪ {τ}

then [[Q]] = α.[[P]] X−→r α.[[P]] = [[Q′]].

2. Similar to the previous one.

Read: Q = {µ1, . . . , µn}.Q1. Let A = {α1, . . . , αn} ⊆ Aτ such that µi ∈ {αi, αi} for each i ∈ [1, n].

1. By operational rules, Q
X−→r {µ1, . . . , µn}.Q′

1 = {α1, . . . , αn}.Q′
1 = Q′ if Q1

X−→r Q′
1 and

U({µ1, . . . , µn}) ∩ (X ∪ {τ}) = ∅. By induction hypothesis, [[Q1]]
X−→r [[Q′

1]]. Moreover,
U({µ1, . . . , µn}) ∩ (X ∪ {τ}) = ∅ implies either µi = αi or µi = αi and αi /∈ X ∪ {τ}
for each i ∈ [1, n]. Thus, by repeated applications of rules Readt1 and Readt2, [[Q]] =
µ1 µn . [[Q1]]

X−→r α1 αn . [[Q′
1]] = [[Q′]].

2. [[Q]] = µ1 µn . [[Q1]]
X−→r Q′′ is derived by repeated applications of rules Readt1

and Readt2, hence (i) [[Q1]]
X−→r Q′′

1, (ii) for each i ∈ [1, n], either µi = αi or µi =

αi and αi /∈ X ∪ {τ} and (iii) Q′′ = α1 αn . Q′′
1. If [[Q1]]

X−→r Q′′
1 then, by

induction hypothesis, Q1
X−→r Q′

1 and Q′′
1 = [[Q′

1]]. Moreover, by (ii), we have also

U({µ1, . . . , µn})∩(X∪{τ}) = ∅. Thus, Q
X−→r {µ1, . . . , µn}.Q′

1 = {α1, . . . , αn}.Q′
1 = Q′

with [[Q′]] = α1 αn . [[Q′
1]] = α1 αn . Q′′

1 = Q′′.

2

47

D A Proof of Proposition 5.10

This section is devoted to proving Proposition 5.10.

Proposition 5.10 Let Q,Q′ ∈ L(P̃) and A ⊆ Aτ . Then:

1. Q
α−→ Q′ and s = 〈v1, . . . , vn〉 ∈ UE(Q, A) implies either s ∈ UE(Q′, A) or there exists some

j ∈ [1, n] such that vj /∈ LAB(Q′).

2. Q
X−→r Q′ implies LE(Q,A) = LE(Q′, A) = UE(Q′, A).

Proof:
We start proving Item 1. Since Q

αÃ Q′ implies Q′ = Q and, hence, UE(Q′, A) = UE(Q,A),
we only prove that Q

α7→ Q′ and s = 〈v1, . . . , vn〉 ∈ UE(Q,A) implies either s ∈ UE(Q′, A) or
vj /∈ LAB(Q′) for some j ∈ [1, n]. We proceed by induction on derivation Q

α7→ Q′.

Nil, Var: Q = nilu, Q = xu. This case is not possible since Q 6 α7→.

Pref: Q = αu.P1 or Q = αu.P1 with P∈Lu1(P̃1). Of course only the latter case is possible. Then
Q

α7→ P1, s ∈ UE(Q,A) implies α 6∈ A and s = 〈u〉. By Fact 5.5-2, u 6∈ LAB(P1).

Read: Q = µu1 .u Q1 with Q1 ∈ Lu2(P̃). By operational rules Q
α7→ Q′ implies Q1

α7→ Q′ and,
by Fact 5.5-2, Q′ ∈ Lv(P̃) with u2 ≤ v. Moreover, s ∈ UE(Q,A) implies either s = 〈u1〉
or s = 〈v1, . . . , vn〉 ∈ UE(Q1, A). In the latter case the statement follows by induction
hypothesis. In the former one, as in the Pref case, s = 〈u1〉 and Q′ ∈ Lv(P̃) with u2 ≤ v
implies u /∈ LAB(Q′).

Sum: Q = Q1 +u Q2. By the operational semantics Q1 +u Q2
α7→ Q′ if either Q1

α7→ Q′ or Q2
α7→ Q′.

Assume the former case. The other one is similar. If s ∈ UE(Q1, A) then by induction
hypothesis either s ∈ UE(Q′, A) or vj /∈ LAB(Q′) for some j ∈ [1, n]. Then assume s ∈
UE(Q2, A). By the labelling function, each vj ∈ LAB(Q1) is of the form vj = u1uj while
each vj ∈ LAB(Q2) is of the form vj = u2uj , for some label uj . Then by Fact 5.5-2, we have
vj /∈ LAB(Q1) and vj 6∈ LAB(Q′), for any j ∈ [1, n].

Par: Q = Q1 ‖u
B Q2. Assume Q

α−→ Q′ and s = 〈v1, . . . , vn〉 ∈ UE(Q,A).

By s ∈ UE(Q1‖u
BQ2, A) we have either (i) s ∈ UE(Q1, A ∪ B), (ii) s ∈ UE(Q2, A ∪ B) or (iii)

s ∈ UE(Q1,Aτ\{α})×UE(Q2,Aτ\{α}), for some α ∈ B\A. Now consider the following three
possible cases:

- α 6∈ B, Q1
α7→ Q′

1 and Q′ = clean(Q′
1‖u

BQ2).
Consider case (i). By induction hypothesis it is either s ∈ UE(Q′

1, A ∪ B) or vj 6∈
LAB(Q′

1) for some j ∈ [1, n]. If s ∈ UE(Q′
1, A ∪ B) then s ∈ UE(Q′

1 ‖u
B Q2, A) =

UE(clean(Q′
1 ‖u

B Q2), A) = UE(Q′, A) by Lemma A.11. Now assume that vj 6∈ LAB(Q′
1),

for some j ∈ [1, n]. Since s ∈ UE(Q1, A∪B) implies also vj 6= u and vj /∈ LAB(Q2) (Fact
5.4), we have that vj /∈ LAB(Q′

1‖u
BQ2) = LAB(clean(Q′

1‖u
BQ2)) = LAB(Q′).

Consider case (ii). Then, again by Lemma A.11, we have that s ∈ UE(Q2, A ∪ B) ⊆
UE(Q′

1‖u
BQ2, A) = UE(clean(Q′

1‖u
BQ2), A) = UE(Q′, A).

Finally consider case (iii). By definition of ×, if s ∈ UE(Q1,Aτ\{α})× UE(Q2,Aτ\{α})
then there exist s1 and s2 process labels such that s1 ∈ UE(Q1,Aτ\{α}) and s2 ∈
UE(Q2,Aτ\{α}) and s = s1 × s2. By induction hypothesis, either s1 ∈ UE(Q′

1,Aτ\{α})
or vj 6∈ LAB(Q′

1) for some j ∈ [1, n]. If s1 ∈ UE(Q′
1,Aτ\{α}) then it is also s = s1× s2 ∈

UE(Q′
1,Aτ\{α}) × UE(Q2,Aτ\{α}) ⊆ UE(Q′

1 ‖u
B Q2, A) = UE(clean(Q′

1 ‖u
B Q2), A) =

48

UE(Q′, A), again by Lemma A.11. If vj 6∈ LAB(Q′
1) as in the previous cases we have that

vj /∈ LAB(Q′
1‖u

BQ2) = LAB(Q′).

- α 6∈ B, Q2
α7→ Q′

2 and Q′ = clean(Q1 ‖u
B Q′

2). This case is similar to the previous one.

- α ∈ B, Qi
α7→ Q′

i for i = 1, 2 and Q′ = clean(Q′
1‖u

BQ′
2). Consider case (i). By induction

hypothesis either s ∈ UE(Q′
1, A∪B) or vj 6∈ LAB(Q′

1) for some j ∈ [1, n]. As in the previ-
ous items, we can prove that s ∈ UE(Q′

1, A∪B) implies s ∈ UE(Q′
1‖BQ′

2, A) = UE(Q′, A)
and vj 6∈ LAB(Q′

1) implies vj 6∈ LAB(Q′
1 ‖u

BQ′
2) = LAB(Q′). Case (ii) can be proven simi-

larly. Then consider case (iii). By definition of ×, s ∈ UE(Q1,Aτ\{α})×UE(Q2,Aτ\{α})
implies there are s1 and s2 process labels such that si = 〈vi1, . . . , vini〉 ∈ UE(Qi,Aτ\{α}).
By induction hypothesis, if both s1 ∈ UE(Q′

1,Aτ\{α}) and s2 ∈ UE(Q′
2,Aτ\{α}) then

s1 × s2 ∈ UE(Q′
1,Aτ\{α}) × UE(Q′

2,Aτ\{α}) ⊆ UE(Q′
1‖u

BQ′
2, A) = UE(Q′, A). If v1j /∈

LAB(Q′
1) (similarly for v2j /∈ LAB(Q′

2)) then, as in the Sum case, we have that v1j /∈
LAB(Q′

2) and hence also v1j /∈ LAB(Q′).

Rel: Q = Q1[Φu]. By the operational semantics, Q
α7→ Q′

1[Φu] if there exists β ∈ Φ−1(α) such that

Q1
β7→ Q′

1. Moreover, s = 〈v1, . . . vn〉 ∈ UE(Q1[Φu], A) if s ∈ UE(Q1, Φ−1(A)). By induction
hypothesis either s ∈ UE(Q′

1,Φ
−1(A)) or vj /∈ LAB(Q′

1) for some j ∈ [1, n]. In the former
case s ∈ UE(Q′

1[Φu], A). In the latter one, vj ∈ LAB(Q1) implies v 6= u and hence also
vj /∈ LAB(Q′

1[Φu]).

Rec: Q = recxu.Q1. Let S1 = unmark(Q1) and S = Q1{|recxu.S1/x|}. By operational rules Q
α7→ Q′

implies S
α7→ Q′. Now assume s ∈ UE(Q,A) = UE(Q1, A) = UE(S, A) by Proposition A.4-2.

By induction hypothesis we have either s ∈ UE(Q′, A) or vj /∈ LAB(Q′) for some j ∈ [1, n].

Then prove Item 2. The two statements are proven by induction on Q.

Var, Stop: Q = xu. This case is not possible since Q 6 X−→.

Nil: Q = nilu. In this case Q
X−→ nil = Q′ and LE(Q,A) = LE(Q′, A) = UE(Q′, A) = ∅ for any

A ⊆ Aτ .

Pref: Q = αu.P1 or Q = αu.P1. We prove only the latter case (the former one can be proven simi-
larly). Assume that Q

X−→ αu.P1 = Q′. If α /∈ A then LE(Q,A) = LE(Q′, A) = UE(Q′, A) =
{〈u〉}, otherwise LE(Q,A) = LE(Q′, A) = UE(Q′, A) = ∅.

Read: Q = αu . Q1 or Q = αu . Q1. We prove only the latter case (the former one can be proven
similarly). By operational rules, Q

X−→ Q′ implies Q1
X−→ Q′

1 and Q′ = αu .Q′
1. If α /∈ A then,

by induction hypothesis, LE(Q,A) = {〈u〉} ∪ LE(Q1, A) = {〈u〉} ∪ LE(Q′
1, A) = LE(Q′, A).

Similarly we can prove that LE(Q,A) = UE(Q′, A). If α /∈ A, then LE(Q,A) = LE(Q1, A) =
LE(Q′, A) and, similarly, LE(Q,A) = LE(Q1, A) = UE(Q′

1, A) = UE(Q′, A).

Sum: Q = Q1 +u Q2. By the operational rule Q
X−→ Q′

1 +u Q′
2 implies Q1

X−→ Q′
1 and Q2

X−→ Q′
2. By

induction hypothesis LE(Q,A) = LE(Q1, A)∪LE(Q2, A) = LE(Q′
1, A)∪LE(Q′

2, A) = LE(Q′, A).
Similarly LE(Q′, A) = LE(Q′

1, A) ∪ LE(Q′
2, A) = UE(Q′

1, A) ∪ UE(Q′
2, A) = UE(Q′, A).

Par: Q = Q1‖u
AQ2. In this case, we have that Q

X−→ Q′ if X ⊆ (A ∩ (X1 ∪X2)) ∪ ((X1 ∩X2)\A),

Q1
X1−−→ Q′

1 and Q2
X2−−→ Q′

2 and Q′ = Q′
1 ‖u

A Q′
2. By induction hypothesis LE(Qi, A) =

LE(Q′
i, A) = UE(Q′

i, A), for i = 1, 2. Then: LE(Q,A) =

LE(Q1, A ∪B) ∪ LE(Q2, A ∪B) ∪ (∪α∈B\A LE(Q1,Aτ\{α})× LE(Q2,Aτ\{α})) =

49

LE(Q′
1, A ∪B) ∪ LE(Q′

2, A ∪B) ∪ (∪α∈B\A LE(Q′
1,Aτ\{α})× LE(Q′

2,Aτ\{α})) =

LE(Q′
1‖AQ′

2, A) = LE(clean(Q′
1‖AQ′

2), A) = LE(Q′, A), by Proposition A.10-1. Similarly
we can prove that LE(Q′, A) = UE(Q′

1‖AQ′
2, A) = UE(clean(Q′

1‖AQ′
2), A) = UE(Q′, A), by

Lemma A.11.

Rel: Q = Q1[Φu]. Q
X−→ Q′

1[Φu] implies Q1
Φ−1(X∪{τ})\{τ}−−−−−−−−−−−→ Q′

1. By induction hypothesis we
have that LE(Q1, A) = LE(Q′

1, A) = UE(Q′
1, A). Thus LE(Q,A) = LE(Q1, Φ−1(A)) =

LE(Q′
1, Φ

−1(A)) = LE(Q′, A). Similarly, LE(Q′
1, Φ

−1(A)) = UE(Q′
1, Φ

−1(A)) = UE(Q′, A).

Rec: Q = rec xu.Q1. Q
X−→r Q′ implies Q1

X−→r Q′
1 and Q′ = rec xu.Q′

1. By induction hypothesis
LE(Q′, A) = LE(Q′

1, A) = LE(Q1, A) = LE(Q,A) and UE(Q′, A) = UE(Q′
1, A) = LE(Q1, A) =

LE(Q,A).

2

50

E A Proof of Proposition 5.11

This section is devoted to proving Proposition 5.11. A preliminary lemma is needed.

Lemma E.1 Let Q ∈ L(P̃), X and Y ⊆ A.

1. Q
X−→r Q′ and Y ∩ U(Q,A) = ∅ imply Q

X∪(Y \A)−−−−−−→r Q′;

2. Q
X−→r implies U(Q,A\X) = ∅;

3. Q action-guarded and U(Q,A\X) = ∅ implies Q
X−→r.

Proof: We prove these items together by induction on Q.

Var: Q = xu. This case is not possible since Q 6 X−→r and Q is not action-guarded.

Nil: Q = nilu. In this case:

1. Q
X−→r nil, Y ∩ U(Q,A) = ∅ and Q

X∪(Y \A)−−−−−−→r nil.

2. Q
X−→r and U(Q,A\X) = ∅.

3. Q is action-guarded, U(Q,A\X) = ∅ and Q
X−→r.

Pref: Q = αu.P1 or Q = αu.P1. Consider only the second case (the first case is similar to the
Nil-case).

1. Q
X−→r Q′ implies, by operational rules, α /∈ X ∪ {τ} and Q′ = αu.P1. If α ∈ A then,

easily, α /∈ Y \A. Otherwise, α /∈ A and Y ∩ U(Q,A) = Y ∩ {α} = ∅ imply α /∈ Y .
So, again α /∈ Y \A. Thus, α /∈ (X ∪ (Y \A)) ∪ {τ} and, again by operational rules,

Q
X∪(Y \A)−−−−−−→r αu.P1 = Q′

2. Q
X−→r implies α /∈ X ∪ {τ} and, hence, α ∈ A\X. Then U(Q,A\X) = ∅.

3. Q is action-guarded. Moreover, U(Q,A\X) = ∅ implies α ∈ A\X. Since τ 6= α ∈ A and
α /∈ X, we have that α /∈ X ∪ {τ} and, hence, Q

X−→r.

Read: Q = αu1 .u Q1 or Q = αu1 .u Q1. Consider only the second case (the first case is easier).

1. Q
X−→r Q′ implies, by operational rules, α /∈ X ∪ {τ}, Q1

X−→r Q′
1 and Q′ = αu1 .u Q′

1.

By induction hypothesis, Q1
X−→r Q′

1 and Y ∩ U(Q1, A) ⊆ Y ∩ U(Q, A) = ∅ implies

Q1
X∪(Y \A)−−−−−−→r Q′

1. Furthermore, if α ∈ A then, easily, α /∈ Y \A. If α /∈ A then
∅ = Y ∩ U(Q,A) ⊇ Y ∩ {α} imply α /∈ Y . So, it is again α /∈ Y \A. Thus, α /∈
(X ∪ (Y \A)) ∪ {τ}. Finally, again by operational rules, Q

X∪(Y \A)−−−−−−→r αu1 .u Q′
1 = Q′.

2. Q
X−→r implies α /∈ X ∪{τ} and Q1

X−→r. By induction hypothesis it is U(Q1,A\X) = ∅.
Moreover, α /∈ X ∪ {τ} implies α ∈ A\X. Then U(Q,A\X) = ∅.

3. Assume Q and, hence, Q1 action-guarded. Assume, moreover, U(Q,A\X) = ∅, i.e.
α ∈ A\X and U(Q1,A\X) = ∅. Q1 action-guarded and U(Q1,A\X) = ∅ implies, by
induction hypothesis that Q1

X−→r. Moreover, α ∈ A\X implies τ 6= α ∈ A and α /∈ X,
that is α /∈ X ∪ {τ}. Finally, by operational rule, Q

X−→r.

Sum: Q = Q1 +u Q2

51

1. Q
X−→r Q′ and Y ∩ U(Q,A) = Y ∩ (U(Q1, A) ∪ U(Q2, A)) = ∅ imply Qi

X−→r Q′
i, Y ∩

U(Qi, A) = ∅ for i = 1, 2 and Q′ = Q′
1 +u Q′

2. By induction hypothesis Q1
X∪(Y \A)−−−−−−→r Q′

1,

Q2
X∪(Y \A)−−−−−−→r Q′

2. Thus, by operational rules, Q
X∪(Y \A)−−−−−−→r Q′

1 + Q′
2 = Q′.

2. If Q
X−→r then Q1

X−→r and Q2
X−→r. By induction hypothesis U(Q1,A\X) = ∅,

U(Q2,A\X) = ∅ and, hence, U(Q,A\X) = ∅.
3. In this case Q guarded implies both Q1 and Q2 guarded. Moreover if U(Q,A\X) = ∅

then U(Q1,A\X) = U(Q2,A\X) = ∅. By induction hypothesis Q1
X−→r, Q2

X−→r and,
hence, Q

X−→r.

Par: Q = Q1 ‖u
B Q2.

1. If Q
X−→r Q′ then, by operational rules, there exist X1, X2 such that Q1

X1−−→r Q′
1,

Q2
X2−−→r Q′

2, X ⊆ (B ∩ (X1 ∪X2))∪ ((X1 ∩X2)\B) and Q′ = clean(Q′
1 ‖u

B Q′
2). Now, let

A1 = (U(Q1)\U(Q2)) ∩ B and A2 = (U(Q2)\U(Q1)) ∩ B. Now we want to prove that
Y ∩ U(Q,A) = ∅ implies Y ∩ U(Q1, A ∪A1) = Y ∩ U(Q2, A ∪A2) = ∅.
Assume Y ∩ U(Q, A) = ∅ and, by contradiction, α ∈ Y ∩ U(Q1, A ∪ A1) 6= ∅. Then, by
Propositions A.1-1 and A.1-4, α ∈ Y such that α ∈ U(Q1), α /∈ A and α /∈ A1.
We have to consider two possible subcases. If α /∈ B then α ∈ U(Q1) and α /∈ A ∪ B
implies α ∈ U(Q1, A ∪ B) ⊆ U(Q,A) (see Proposition A.1-2). Otherwise, if α ∈ B then
α ∈ U(Q1) and α /∈ A1 implies also α ∈ U(Q2). Thus α ∈ U(Q1) ∩ U(Q2) ∩B such that
α /∈ A. Again by Proposition A.1-2, it is α ∈ U(Q1, A) ∩ U(Q2, A) ∩ B ⊆ U(Q,A). In
both cases, we have α ∈ Y ∩ U(Q,A) = ∅
This prove that Y ∩U(Q,A) = ∅ implies Y ∩U(Q1, A∪A1) = ∅. Similarly we can prove
that if Y ∩ U(Q,A) = ∅ then also Y ∩ U(Q2, A ∪ A2) = ∅. By induction hypothesis

Q1
X1∪(Y \(A∪A1))−−−−−−−−−−→r Q′

1 and Q2
X2∪(Y \(A∪A2))−−−−−−−−−−→r Q′

2. Let X ′
1 = X1 ∪ (Y \(A ∪ A1)) and

X ′
2 = X2 ∪ (Y \(A ∪ A2)). By operational rules it remains to prove that X ∪ (Y \A) ⊆

(B ∩ (X ′
1 ∪ X ′

2)) ∪ ((X ′
1 ∩ X ′

2)\B). First of all, X1 ⊆ X ′
1 and X2 ⊆ X ′

2 imply X ⊆
(B ∩ (X1 ∪ X2)) ∪ ((X1 ∩ X2)\B) ⊆ (B ∩ (X ′

1 ∪ X ′
2)) ∪ ((X ′

1 ∩ X ′
2)\B). Now assume

α ∈ Y \A and consider the following possible subcases:
- α /∈ B. Then α /∈ A1 and α /∈ A2 implies α ∈ Y \(A ∪ A1) ⊆ X ′

1 and α ∈
Y \(A ∪A2) ⊆ X ′

2. Thus, α ∈ (X ′
1 ∩X ′

2)\B.
- α ∈ B. In this case, α /∈ A1 implies α ∈ Y \(A ∪A1) ⊆ X ′

1. If, otherwise, α ∈ A1 =
(U(Q1)\U(Q2))∩B, then α /∈ U(Q2) implies α /∈ A2 and, hence, µ ∈ Y \(A∪A2) ⊆
X ′

2. In both cases µ ∈ B ∩ (X ′
1 ∪X ′

2).

We can conclude that Q
X∪(Y \A)−−−−−−→r Q′.

2. If Q
X−→r then Q1

X1−−→r, Q2
X2−−→r with X ⊆ (B ∩ (X1 ∪ X2)) ∪ ((X1 ∩ X2)\B). By

induction hypothesis U(Q1,A\X1) = U(Q2,A\X2) = ∅.
Now, assume toward a contradiction that α ∈ U(Q,A\X) 6= ∅. By Proposition A.1
(Items 4. and 1.) α ∈ U(Q) such that α /∈ A\X. We distinguish the following possible
subcases:

- α = τ . Then α ∈ U(Q) implies either α ∈ U(Q1, B) or α ∈ U(Q2, B). More-
over, surely τ /∈ A\X1 and τ /∈ A\X2. By Proposition A.1-2., we have either
α ∈ U(Q1,A\X1) = ∅ or α ∈ U(Q2,A\X2) = ∅.

- α ∈ A (and, since α /∈ A\X, also α ∈ X) such that α /∈ B. As in the above case,
we have that α ∈ U(Q) implies either α ∈ U(Q1, B) or α ∈ U(Q2, B). Moreover,
α ∈ X\B implies α ∈ X1 ∩X2 and hence both α /∈ A\X1 and α /∈ A\X2. As in the
above case we can prove that either α ∈ U(Q1,A\X1) = ∅ or α ∈ U(Q2,A\X2) = ∅.

52

- α ∈ A (and, since α /∈ A\X, also α ∈ X) such that α ∈ B. In such a case α ∈ U(Q)
implies α ∈ U(Q1, A) ∩ U(Q2, A) ∩ B. Moreover, α ∈ X ∩ B implies α ∈ X1 ∪X2

and hence either α /∈ A\X1 or α /∈ A\X2. Also in this case we can conclude that
either α ∈ U(Q1,A\X1) = ∅ or α ∈ U(Q2,A\X2) = ∅.

3. Let us assume Q action-guarded (and, hence, both Q1 and Q2 action-guarded) and
U(Q,A\X) = ∅. By Definition 2.2 it is U(Q1, (A\X)∪B) = U(Q2, (A\X)∪B) = ∅ and
U(Q1,A\X) ∩ U(Q2,A\X) ∩B = ∅. First we prove that (A\X) ∪B = A\(X\B).

“⊆” If α ∈ A\X then A\X ⊆ A\(X\B) implies also α ∈ A\(X\B). If, otherwise,
α ∈ B ⊆ A then we have α /∈ X\B and hence α ∈ A\(X\B).

“⊇” If α ∈ A\(X\B), then α ∈ A such that either α /∈ X or α ∈ X ∩ B. Thus, it is
either α ∈ A\X or α ∈ B. In both cases α ∈ (A\X) ∪B.

Qi action-guarded and U(Qi, (A\X) ∪ B) = U(Qi,A\(X\B)) = ∅ implies by induction

hypothesis, Qi
X\B−−−→r for i = 1, 2. Now, let us denote with X ′

1 = (X ∩ B)\U(Q1) and

with X ′
2 = (X ∩ B)\U(Q2). Then: Qi

X\B−−−→r and X ′
i ∩ U(Qi) = ∅ implies by Item 1

Qi
(X\B)∪X′

i−−−−−−−→r. Moreover it is also X ′
1 ∪ X ′

2 = X ∩ B. Indeed, let us assume (toward
a contradiction) that there exists α ∈ X ∩ B such that both α /∈ X ′

1 and α /∈ X ′
2 and,

hence, that both α ∈ U(Q1) and α ∈ U(Q2). Then, α ∈ U(Q1) ∩ U(Q2) ∩ B such that
α /∈ A\X. Thus, by A.1-2, α ∈ U(Q1,A\X) ∩ U(Q2,A\X) ∩B ⊆ U(Q,A\X) = ∅.
Let X1 = (X\B) ∪ X ′

1 and X2 = (X\B) ∪ X ′
2. By operational rules, to prove that

Q
X−→r it still remains to show that X ⊆ (B ∩ (X1 ∪X2))∪ ((X1 ∩X2)\B). This follows

easily because (X1 ∩X2)\B) = X\B and B ∩ (X1 ∪X2) = X ′
1 ∪X ′

2 = X ∩B.

Rel: Q = Q1[Φu]. As a first statement (that wil be useful in the remain of the proof) we prove
that if X ⊆ A and X ′ = Φ−1(X ∪ {τ})\{τ} then Φ−1(A\X) = A\X ′. Let µ ∈ Φ−1(A\X).
Then µ ∈ Aτ such that Φ(µ) ∈ A and Φ(µ) /∈ X. In particular, Φ(µ) ∈ A implies µ 6= τ
(since Φ(τ) = τ /∈ A) and Φ(µ) /∈ {τ}. Thus, µ ∈ A such that Φ(µ) /∈ X ∪ {τ} and, hence,
µ /∈ Φ−1(X ∪ {τ}) ⊇ X ′. We can conclude that µ ∈ A\X ′.

Now, let µ ∈ A\X ′. Then µ 6= τ and µ /∈ X ′ imply µ /∈ Φ−1(X ∪ {τ}) and, hence, Φ(µ) /∈
X ∪ {τ}. Finally, Φ(µ) /∈ X and Φ(µ) 6= τ imply Φ(µ) ∈ A\X and, hence, µ ∈ Φ−1(A\X).

1. Assume Q
X−→r Q′

1[Φu] = Q′ and Y ∩ U(Q,A) = Y ∩ Φ(U(Q1, Φ−1(A))) = ∅. Then

(by operational rules) Q1
X′−→r Q′

1 and Φ−1(Y) ∩ U(Q1, Φ−1(A)) = ∅. By induction

hypothesis Q1
X′∪(Φ−1(Y)\Φ−1(A))−−−−−−−−−−−−−−→r Q′

1. Moreover, since Φ(τ) = τ and Y ⊆ A imply τ /∈
Φ−1(Y), τ /∈ Φ−1(Y)\Φ−1(A) = Φ−1(Y \A) and, hence, Φ−1(Y \A) = Φ−1(Y \A)\{τ},
we have X ′ ∪ (Φ−1(Y)\Φ−1(A)) = (Φ−1(X ∪ {τ})\{τ}) ∪ (Φ−1(Y \A)\{τ}) =
(Φ−1(X ∪ {τ}) ∪ Φ−1(Y \A))\{τ} = Φ−1(X ∪ {τ} ∪ (Y \A))\{τ} =
Φ−1((X ∪ (Y \A)) ∪ {τ})\{τ}.
Finally, again by operational rules, Q

X∪(Y \A)−−−−−−→r Q′
1[Φu] = Q′

2. Assume Q
X−→r and, hence, Q1

X′−→r. By induction hypothesis it is U(Q1,A\X ′) =
U(Q1, Φ−1(A\X)) = ∅. Thus U(Q,A\X) = Φ(U(Q1, Φ−1(A\X))) = ∅.

3. Assume Q action-guarded and U(Q,A\X) = Φ(U(Q1,Φ−1(A\X))) = ∅. Then we have
also Q1 action-guarded and U(Q1,Φ−1(A\X)) = U(Q1,A\X ′) = ∅. By induction hy-

pothesis Q1
X′−→r ad, hence, Q

X−→r.

Rec: Q = rec xu.Q1.

53

1. If Q
X−→r Q′ then Q1

X−→r Q′
1 and Q′ = rec xu.Q′

1. Moreover, assume Y ∩ U(Q,A) =

Y ∩ U(Q1) = ∅. By induction hypothesis we have that Q1
X∪(Y \A)−−−−−−→r Q′

1 and, by the

operational semantics, Q
X∪(Y \A)−−−−−−→r rec xu.Q′

1 = Q′.

2. Assume Q
X−→r and hence Q1

X−→r. By induction hypothesis we have that U(Q,A\X) =
U(Q1,A\X) = ∅.

3. In such a case Q action-guarded implies Q1 action-guarded. Moreover, U(Q,A\X) =
U(Q1,A\X) = ∅ implies, by induction hypothesis, Q1

X−→r and, hence, Q
X−→r.

2

Proposition 5.11 Let Q ∈ L(P̃) and A ⊆ Aτ . Then:

1. Q
1−→ implies U(Q) = ∅;

2. Q guarded and U(Q) = ∅ implies Q
1−→;

3. U(Q,A) = ∅ if and only if UE(Q,A) = ∅.
Proof: Items 1. and 2. are easy corollary of Lemma E.1. Item 3. is proven below by induction on
Q.

Nil, Var: Q = nilu, Q = xu. In these cases U(Q,A) = ∅ and UE(Q,A) = ∅.
Pref: Q = αu.P1 or Q = αu.P1. Consider only the latter case (the former is similar to the previous

ones). U(Q, A) = ∅ if and only if α ∈ A and, hence, if and only if UE(Q,A) = ∅.
Read: Q = αu1 .u Q1 or Q = αu1 .u Q1. Consider only the latter case (the former is similar to

the previous ones). U(Q, A) = ∅ if and only if α ∈ A and U(Q1, A) = ∅ if and only if, by
induction hypothesis α ∈ A and UE(Q1, A) = ∅ if and only if UE(Q,A) = ∅.

Sum: Q = Q1 +u Q2. U(Q,A) = ∅ iff U(Q1, A) = ∅ and U(Q2, A) = ∅, iff, by induction hypothesis,
UE(Q1, A) = ∅, UE(Q2, A) = ∅ and UE(Q,A) = ∅.

Par: Q = Q1‖u
BQ2. We first prove that U(Q1, A) ∩ U(Q2, A) ∩ B = ∅ if and only if, for each

α ∈ B\A, either U(Q1,Aτ\{α}) = ∅ or U(Q2,Aτ\{α}) = ∅.
Assume U(Q1, A)∩U(Q2, A)∩B = ∅ and – toward a contradiction – that there exists α ∈ B\A
such that U(Q1,Aτ\{α}) 6= ∅ and U(Q2,Aτ\{α}) 6= ∅. Since β ∈ U(Qi,Aτ\{α}) implies (by
Proposition A.1-1.) β /∈ Aτ\{α} (that is β = α), we have that ∅ 6= U(Qi,Aτ\{α}) ⊆ {α} and
hence U(Qi,Aτ\{α}) = {α} for i = 1, 2. Thus, α ∈ U(Q1,Aτ\{α})∩U(Q2,Aτ\{α}). Finally,
since it is also α ∈ B\A, α ∈ U(Q1, A) ∩ U(Q2, A) ∩B = ∅ (see Proposition A.1-2.).

To prove the inverse implication we observe that, if α ∈ U(Q1, A) ∩ U(Q2, A) ∩ B 6= ∅ then
α ∈ B\A (again by Proposition A.1-1.) such that α ∈ U(Q1, A) ∩ U(Q2, A). Since surely
α /∈ Aτ\{α}, it is also (by Proposition A.1-2.) α ∈ U(Q1,Aτ\{α}) ∩ U(Q2,Aτ\{α}) 6= ∅. As
above this allows us to conclude that U(Q1,Aτ\{α}) = U(Q2,Aτ\{α}) = {α} 6= ∅
Now, U(Q, A) = ∅ iff U(Q1, A ∪ B) = U(Q2, A ∪ B) = ∅ and U(Q1, A) ∩ U(Q2, A) ∩ B = ∅,
iff U(Q1, A ∪ B) = U(Q2, A ∪ B) = ∅ and, for each α ∈ B\A, either U(Q1,Aτ\{α}) = ∅ or
U(Q2,Aτ\{α}) = ∅, iff (by induction hypothesis) UE(Q1, A ∪ B) = UE(Q2, A ∪ B) = ∅ and,
for each α ∈ B\A, either UE(Q1,Aτ\{α}) = ∅ or UE(Q2,Aτ\{α}) = ∅, iff UE(Q1, A ∪ B) =
UE(Q2, A ∪ B) = ∅ and, for each α ∈ B\A, UE(Q1,Aτ\{α}) × UE(Q2,Aτ\{α}) = ∅, iff
UE(Q,A) = ∅.

54

Rel: Q = Q1[Φu]. U(Q,A) = Φ(U(Q1, Φ−1(A))) = ∅ iff U(Q1, Φ−1(A)) = ∅ iff, by induction
hypothesis, UE(Q1, Φ−1(A)) = UE(Q,A) = ∅.

Rec: Q = rec xu.Q1. In this case U(Q,A) = U(Q1, A) = ∅ if and only if, by induction hypothesis,
UE(Q1, A) = UE(Q,A) = ∅.

2

55

F A Proof of Proposition 5.12

This section is devoted to proving Proposition 5.12. A preliminary lemma is needed.

Proposition F.1 Let Q,∈ L(P̃), A,X ⊆ A. Then clean(Q,A) X−→r Q′ implies Q
X\A−−−→r Q′.

Proof: By induction on Q ∈ L(P̃)

Nil, Var: Q = nilu, Q = xu. The latter case is not possible since clean(Q,A) = xu 6 X−→r. Assume

Q = nilu. Then clean(Q, A) = nilu
X−→r nilu and Q

X\A−−−→r nilu.

Pref: Q = αu.P1 or Q = αu.P1. We prove only the latter case (the former one is similar to the
Nil-case). We have two possible subcases:

- α ∈ A. In this case clean(Q,A) = αu.P1
X−→r αu.P1. Moreover α ∈ A ⊆ A implies

α /∈ (X\A) ∪ {τ} and, by operational rules, Q
X\A−−−→r αu.P1.

- α /∈ A In this case clean(Q,A) = αu.P1
X−→r αu.P1 implies α /∈ X ∪ {τ} ⊇ (X\A) ∪ {τ}.

By operational rules, Q
X\A−−−→r αu.P1.

Read: Q = αu1 .u Q1 or Q = αu1 .u Q1. We prove only the latter case (the former one is easier).
We have two possible subcases:

- α ∈ A. By operational rules, clean(Q,A) = αu1 .u clean(Q1, A) X−→r αu1 .u Q′
1 = Q if

clean(Q1, A) X−→r Q′
1. By induction hypothesis Q1

X\A−−−→r Q′
1. Moreover α ∈ A ⊆ A

implies α /∈ (X\A) ∪ {τ}. Thus, again by operational rules, Q
X\A−−−→r αu1 .u Q′

1 = Q′.

- α /∈ A. In this case clean(Q,A) = αu1 .u clean(Q1, A) X−→r αu1 .u Q′
1 = Q if it is both

α /∈ X ∪ {τ} ⊇ (X\A) ∪ {τ} and clean(Q1, A) X−→r Q′
1. As in the above case we can

prove that Q
X\A−−−→r αu1 .u Q′

1 = Q′.

Sum: Q = Q1 +u Q2. By operational rules clean(Q,A) = clean(Q1, A) +u clean(Q2, A) X−→r Q′ im-
plies clean(Q1, A) X−→r Q′

1, clean(Q2, A) X−→r Q′
2 and Q′ = Q′

1 +u Q′
2. By induction hypothesis

Q1
X\A−−−→r Q′

1, Q2
X\A−−−→r Q′

2 and, by operational rules, Q
X\A−−−→r Q′.

Par: Q = Q1 ‖u
B Q2. Let A1 = B\U(Q2) and A2 = B)\U(Q1). Let us assume that clean(Q, A) =

clean(Q1, A ∪A1) ‖u
B clean(Q2, A ∪A2)

X−→r Q′. By operational rules, there exist X1, X2 ⊆ A
such that clean(Qi, A ∪ Ai)

Xi−→r Q′
i for i = 1, 2, X ⊆ (B ∩ (X1 ∪X2)) ∪ ((X1 ∩X2)\B) and

Q′ = clean(Q′
1 ‖u

B Q′
2). By induction hypothesis Q1

X1\(A∪A1)−−−−−−−→r Q′
1 and Q2

X2\(A∪A2)−−−−−−−→r Q′
2.

Moreover, A1 ∩ U(Q2) = A2 ∩ U(Q1) = ∅ and Proposition E.1-1 implies Q1
X′

1−−→r Q′
1 and

Q2
X′

2−−→r Q′
2, where X ′

1 = (X1\(A ∪A1)) ∪A2 and X ′
2 = (X2\(A ∪A2)) ∪A1. By operational

semantics, it remains to prove that X\A ⊆ (B ∩ (X ′
1 ∪X ′

2))∪ ((X ′
1 ∩X ′

2)\B). Let α ∈ X\A.

- α ∈ B. Then α ∈ X implies either α ∈ X1 or α ∈ X2. Assume α ∈ X1 (if α ∈ X2 the
statement can be proved similarly). If α /∈ A1 then, trivially, α ∈ X1\(A ∪ A1) ⊆ X ′

1.
Otherwise, if α ∈ A1, then α ∈ (X2\(A ∪A2)) ∪A1 = X ′

2. In both cases α ∈ X ′
1 ∪X ′

2.

- α /∈ B. Then α ∈ X implies both α ∈ X1 and α ∈ X2. Moreover α /∈ A1, A2 ⊆ B
implies α ∈ X1\(A ∪A1) ⊆ X ′

1 and α ∈ X2\(A ∪A2) ⊆ X ′
2. Thus α ∈ X ′

1 ∩X ′
2.

56

Rel: Q = Q1[Φu]. Assume that clean(Q, A) = clean(Q1, Φ−1(A))[Φu] X−→r Q′. By operational rules,

clean(Q1,Φ−1(A)) X′−→r Q′
1, with X ′ = Φ−1(X ∪ {τ})\{τ} and Q′ = Q′

1[Φu]. By induction

hypothesis we have that Q1
X′\Φ−1(A)−−−−−−−→r Q′

1. Moreover X ′\Φ−1(A) =(
Φ−1(X ∪ {τ})\{τ})\Φ−1(A) =

(
Φ−1(X ∪ {τ})\Φ−1(A)

)\{τ} =
(
Φ−1((X ∪ {τ})\A)

)\{τ} =
(
Φ−1((X\A) ∪ {τ})\{τ}. By operational rules Q

X\A−−−→r Q′
1[Φu] = Q′.

Rec: Q = rec xu.Q1. clean(Q,A) = rec xu.clean(Q1, A) X−→r Q′ implies clean(Q1, A) X−→r Q′
1 and

Q′ = rec xu.Q′
1. By induction hypothesis Q1

X\A−−−→r Q′
1 and, by operational rules Q

X\A−−−→r

rec xu.Q′
1 = Q′.

2

Lemma F.2 Let Q,Q′, Q′′ ∈ L(P̃) and X,X ′ ⊆ A. Then:

1. Q
X−→r Q′ X′−→r Q′′ implies Q 6 µ−→ and Q′ 6 µ−→ for any µ ∈ X ′ ∪ {τ}. Moreover Q′ = Q′′;

2. Q action-guarded and Q 6 µ−→ for any µ ∈ X ∪ {τ} implies Q
X−→r Q′ and Q′ 6 µ−→ for any

µ ∈ X ∪ {τ}.
Proof: We prove these items together by induction on Q.

Var: Q = xu. This case is not possible since Q 6 X−→r and Q is not action-guarded.

Nil: Q = nilu.

1. Q
X−→r nilu = Q′ X′−→r nilu = Q′′, Q = Q′ = nilu 6 µ−→ for any µ ∈ X ′ ∪ {τ} and, trivially,

nilu = nilu.

2. Q is action-guarded, Q 6 µ−→ for any µ ∈ X ∪ {τ}, Q
X−→r nilu = Q′ and Q′ 6 µ−→ for any

µ ∈ X ∪ {τ}.
Pref: Q = αu.P1 or Q = αu.P1. Consider only the latter case (the former case is simpler).

1. αu.P1
X−→r αu.P1 = Q′ X′−→r αu.P1 = Q′′ implies α /∈ X ′ ∪ {τ}. Thus, by operational

semantics, both Q and Q′ 6 µ−→ for any µ ∈ X ′ ∪ {τ}. Clearly Q′ = Q′′.

2. In this case Q is action-guarded. Moreover Q 6 µ−→ for any µ ∈ X∪{τ} implies α /∈ X∪{τ}
and, by operational rules, Q

X−→r αu.P1 = Q′. Again by operational rules, α /∈ X ∪ {τ}
implies Q′ 6 µ−→ for any µ ∈ X ∪ {τ}.

Read: Q = αu1 .u Q1 or Q = αu1 .u Q1. Consider only the latter case (the former case is simpler).

1. αu1 .u Q1
X−→r αu1 .u Q′

1 = Q′ X′−→r αu1 .u Q′′
1 = Q′′ implies α /∈ X ′ ∪ {τ} and Q1

X−→r

Q′
1

X′−→r Q′′
1. By induction hypothesis we have that Q1, Q

′
1 6

µ−→ for any µ ∈ X ′ ∪ {τ};
moreover Q′

1 = Q′′
1. By operational rules, α /∈ X ′∪{τ} and Q1, Q

′
1 6

µ−→ for any µ ∈ X ′∪{τ}
implies Q,Q′ 6 µ−→ for any µ ∈ X ′ ∪ {τ}. Finally Q′

1 = Q′′
2 implies Q′ = Q′′.

2. Q action-guarded implies that also Q1 it is so. Moreover, Q 6 µ−→ for any µ ∈ X ∪ {τ}
implies α /∈ X∪{τ} and Q1 6 µ−→ for any µ ∈ X∪{τ}. By induction hypothesis, Q1

X−→r Q′
1

and Q′
1 6

µ−→ for any µ ∈ X ∪ {τ}. By the operational rules, α /∈ X ∪ {τ} and Q1
X−→r Q′

1

implies Q = αu1 .u Q1
X−→r αu1 .u Q′

1 = Q′. Finally, α /∈ X ∪ {τ} and Q′
1 6

µ−→ for any
µ ∈ X ∪ {τ} implies that Q′ = αu1 .u Q′

1 6
µ−→ for any µ ∈ X ∪ {τ}.

57

Sum: Q = Q1 +u Q2.

1. If Q
X−→r Q′ X′−→r Q′′ then Q1

X−→r Q′
1

X′−→r Q′′
1, Q2

X−→r Q′
2

X′−→r Q′′
2, Q′ = Q′

1 +u Q′
2

and Q′′ = Q′′
1 +u Q′′

2. By induction hypothesis Q1 6 µ−→, Q′
1 6

µ−→ and Q2 6 µ−→, Q′
2 6

µ−→ for any
µ ∈ X∪{τ} and, hence, by operational rules, both Q 6 µ−→ and Q′ 6 µ−→ for any µ ∈ X ′∪{τ}.
Again by induction hypothesis, Q′

1 = Q′′
1 and Q′

2 = Q′′
2. Thus Q′ = Q′′.

2. Q guarded implies both Q1 and Q2 guarded. Assume Q 6 µ−→ for any µ ∈ X ∪ {τ}. Then,
by operational rules, Q1 6 µ−→ and Q2 6 µ−→ for any µ ∈ X ∪ {τ}. By induction hypothesis,
Q1

X−→r Q′
1, Q2

X−→r Q′
2 and, hence, Q

X−→r Q′
1+uQ′

2 = Q′. Moreover, again by induction
hypothesis, we have that both Q′

1 and Q′
2 6

µ−→ for any µ ∈ X ∪{τ}. Then, by operational
rules, also Q′ 6 µ−→ for any µ ∈ X ∪ {τ}.

Par: Q = Q1 ‖u
B Q2.

1. Q
X−→r Q′ implies that there exist X1, X2 such that Q1

X1−−→r Q′
1, Q2

X2−−→r Q′
2 with

X ⊆ (B ∩ (X1 ∪X2)) ∪ ((X1 ∩X2)\B) and Q′ = clean(Q′
1 ‖u

B Q′
2). Let A1 = B\U(Q′

2)

and A2 = B\U(Q′
1) and assume Q′ = clean(Q′

1, A1) ‖u
B clean(Q′

2, A2)
X′−→r Q′′. Again,

there exist X ′
1, X

′
2 such that clean(Q′

1, A1)
X′

1−−→r Q′′
1, clean(Q′

2, A2)
X′

2−−→r Q′′
2 with X ′ ⊆

(B∩(X ′
1∪X ′

2))∪((X ′
1∩X ′

2)\B) and Q′′ = clean(Q′′
1‖u

BQ′′
2). If clean(Q′

1, A1)
X′

1−−→r Q′′
1 then

Q′
1

X′
1\A1−−−−→r Q′′

1 (by Proposition F.1). Moreover A2 ∩ U(Q′
1) = ∅ and Proposition E.1-1

imply Q′
1

(X′
1\A1)∪A2−−−−−−−−→r Q′′

1. Similarly Q′
2

(X′
2\A2)∪A1−−−−−−−−→r Q′′

2. By induction hypothesis

Q1
X1−−→r Q′

1

(X′
1\A1)∪A2−−−−−−−−→r Q′′

1 and Q2
X2−−→r Q′

2

(X′
2\A2)∪A1−−−−−−−−→r Q′′

2 imply (i) Q1, Q
′
1 6

µ−→ for
any µ ∈ (X ′

1\A1) ∪A2 ∪ {τ} and (ii) Q2, Q
′
2 6

µ−→ for any µ ∈ (X ′
2\A2) ∪A1 ∪ {τ}.

Now we prove that Q′ 6 µ−→ (and similarly Q) for any µ ∈ X ′∪{τ}. First Q′
1 6 τ−→ and Q′

2 6 τ−→
imply Q′ 6 τ−→. Let µ ∈ X ′ and consider the following subcases:

- µ ∈ B. Then µ ∈ X implies µ ∈ X ′
1 ∪ X ′

2 and, hence, either µ ∈ X ′
1 or µ ∈ X ′

2.
Assume µ ∈ X ′

1 (the case in which µ ∈ X2 can be proved similarly). If µ ∈ A1 then,
by (ii), Q′

2 6
µ−→. If µ /∈ A1 and, hence, µ ∈ X ′

1\A1, then, by (i), Q′
1 6

µ−→. In both cases
Q′ 6 µ−→.

- µ /∈ B. In this case µ ∈ X ′
1 and µ ∈ X ′

2. Moreover µ /∈ A1, A2 ⊆ B Thus µ ∈ X ′
1\A1

and µ ∈ X ′
2\A2 imply, by (i) and (ii), Q′

1 6
µ−→, Q′

2 6
µ−→ and, hence, Q′ 6 µ−→.

Again by induction hypothesis we have Q′
1 = Q′′

1 and Q′
2 = Q′′

2. Then also Q′ = Q′′.

2. Assume Q guarded and, hence, both Q1 and Q2 guarded. Now, assume Q 6 µ−→ for
any µ ∈ X ∪ {τ}. By operational semantics we have that: (i) Q1 6 µ−→ and Q2 6 µ−→,
for any µ ∈ (X\B) ∪ {τ} and (ii) for any µ ∈ X ∩ B either Q1 6 µ−→ or Q2 6 µ−→. Let
X ′

i = {µ ∈ X ∩ B | Qi 6 µ−→} ⊆ X ∩ B ⊆ B and Xi = (X\B) ∪ X ′
i. Then, Qi guarded

and Qi 6 µ−→ for any µ ∈ Xi ∪ {τ} implies, by induction hypothesis, Qi
Xi−→ Q′

i for i = 1, 2.
Moreover, B ∩ (X1 ∪ X2) = B ∩ ((X\B) ∪ X ′

1 ∪ X ′
2) = X ′

1 ∪ X ′
2, (X1 ∩ X2)\B =

(X1\B) ∪ (X2\B) = (X\B) ∪ (X\B) = X\B and, by (ii), X ∩B = X ′
1 ∪X ′

2.
Finally (B ∩ (X1 ∪X2)) ∪ ((X1 ∩X2)\B) = (X ∩B) ∪ (X\B) = X and, by operational
rules, Q

X−→ clean(Q′
1 ‖u

B Q′
2) = Q′. Again by induction hypothesis we have that Q′

1 6
µ−→

for any µ ∈ X1∪{τ} and Q′
2 6

µ−→ for any µ ∈ X2∪{τ}. Also in this case, Q′
1 6 τ−→ and Q′

2 6 τ−→
imply Q′ 6 τ−→. Now, let µ ∈ X. If µ ∈ X\B then µ ∈ X1 and µ ∈ X2 implies both Q′

1 6
µ−→

and Q′
2 6

µ−→ and, hence, Q′ 6 τ−→. If µ ∈ X ∩ B = X ′
1 ∪X ′

2 we have either µ ∈ X ′
1 ⊆ X1 or

µ ∈ X ′
2 ⊆ X2. Thus, either Q′

1 6
µ−→ or Q′

2 6
µ−→. Also in this case Q′ 6 τ−→.

58

Rel: Q = Q1[Φu]. Let X, X ′ ⊆ A, Y = Φ−1(X ∪ {τ})\{τ} and Y ′ = Φ−1(X ′ ∪ {τ})\{τ}. Then
Φ(τ) = τ implies τ ∈ Φ−1(X∪{τ}) and Φ−1(X∪{τ}) = (Φ−1(X∪{τ})\{τ})∪{τ} = Y ∪{τ}.
Similarly, we have Φ−1(X ′ ∪ {τ}) = Y ′ ∪ {τ}.

1. By operational rules Q
X−→r Q′ X′−→r Q′′ implies Q1

Y−→r Q′
1

Y ′−→r Q′′
1, Q′ = Q′

1[Φu] and

Q′′ = Q′′
1[Φu]. By induction hypothesis Q1, Q

′
1 6

µ′−→ for any µ′ ∈ Y ′∪{τ} = Φ−1(X ′∪{τ})
and, hence, Q, Q′ 6 µ−→ for any µ ∈ X ′∪{τ}. Again by induction hypothesis Q′

1 = Q′′
1 and,

hence, also Q′ = Q′′.

2. Q guarded implies Q1 guarded. Now, assume Q 6 µ−→ for any µ ∈ X ∪ {τ}. Then Q1 6 µ
′

−→
for any µ′ ∈ Φ−1(X ∪ {τ}) = Y ∪ {τ}. By induction hypothesis Q1

Y−→r Q′
1 and,

hence, Q
X−→r Q′

1[Φ] = Q′. Again by induction hypothesis we have that Q′
1 6

µ′−→ for any
µ′ ∈ Φ−1(X ∪ {τ}) and, by operational semantics, Q′ 6 µ−→ for any µ ∈ X ∪ {τ}.

Rec: Q = rec xu.Q1

1. Q
X−→r rec xu.Q′

1 = Q′ X′−→r rec xu.Q′′
1 = Q′′ implies Q1

X−→r Q′
1

X′−→r Q′′
1. By induction

hypothesis, Q1, Q
′
1 6

µ−→ for any µ ∈ X ′ ∪ {τ} . Thus, x guarded in Q1 and, hence, in Q′
1

imply, by Proposition A.4-3, Q1{|recxu.unmark(Q1)/x|} 6 µ−→ Q′
1{|recxu.unmark(Q′

1)/x|} 6 µ−→
for any µ ∈ X ′ ∪ {τ}. Finally, by operational semantics, Q,Q′ 6 µ−→ for any µ ∈ X ∪ {τ}.
Again by induction hypothesis, we also have Q′

1 = Q′′
1 and, clearly, Q′ = Q′′.

2. Assume Q and, hence, Q1 action-guarded. In this case Q 6 µ−→ for any µ ∈ X ∪ {τ}
implies Q1{|rec xu.unmark(Q1)/x|} 6 µ−→ and, since x is action-guarded in Q1, also Q1 6 µ−→
for any µ ∈ X ∪{τ} (see Proposition A.4-3). Then, by induction hypothesis, Q1

X−→r Q′
1

and, by operational semantics, Q
X−→r rec xu.Q′

1 = Q′. Moreover, again by induction
hypothesis, Q′

1 6
µ−→ for any µ ∈ X ∪ {τ}. Then, since x action-guarded in Q1 implies x

action-guarded in Q′
1, by Proposition A.4-3 we have that Q′

1{|rec xu.unmark(Q′
1)/x|} 6 µ−→

for any µ ∈ X ∪ {τ}. Finally, by operational rules, Q′ 6 µ−→ for any µ ∈ X ∪ {τ}.

2

Proposition 5.12 Let Q,Q′, Q′′ ∈ L(P̃).

1. Q
1−→ Q′ 1−→ Q′′ implies Q 6 µ−→ and Q′ 6 µ−→ for any µ ∈ Aτ . Moreover Q′ = Q′′;

2. Q guarded and Q 6 µ−→ for any µ ∈ Aτ implies Q
1−→ Q′ 1−→ Q′

Proof:

1. If Q
1−→ Q′ 1−→ Q′′ then, by Lemma F.2-1 and Q,Q′ 6 µ−→ for any µ ∈ Aτ and Q′ = Q′′.

2. By Lemma F.2-2, Q guarded and Q 6 µ−→ for any µ ∈ Aτ implies that Q
1−→ Q′ and Q′ 6 µ−→ for

any µ ∈ Aτ . Moreover since Q guarded implies also Q′ guarded, again by Lemma F.2-2, there
exists Q′′ such that Q′ 1−→ Q′′. By Item 1, Q′ = Q′′ and the statement follows.

2

59

G A Proof of Proposition 6.4

Proposition 6.4 Let Q ∈ L(P̃) and P ∈ L(P̃1) such that P = unmark(Q). Then:

1. LE(Q,A) = LE(P, A) for every A;

2. Q
α−→ Q′ implies P

α−→ P ′ and P ′ = unmark(Q′) for some P ′. Moreover UE(Q′, A) ⊆ UE(Q,A)
and, whenever Q′ is clean and UE(Q′) = ∅, we have Q′ = P ′;

3. P
α−→ P ′ implies Q

α−→ Q′ and P ′ = unmark(Q′) for some Q′.

Proof: Let us first consider Item 2. We prove this items indirectly by providing a proof of the
following two statements:

2.1 Q
αÃ Q′ implies P

αÃ P ′ for some P ′. Notice that if Q
αÃ Q′ and P

αÃ P ′ then Q = Q′ and
P ′ = P trivially implies P ′ = unmark(Q′). Moreover, UE(Q′, A) = UE(Q,A) and whenever
UE(Q′) = ∅ and Q′ is clean then—by Propositions 5.11-3. and 2.10-2.—we have U(Q′) = ∅,
Q′ ∈ P̃1 and, finally, P ′ = unmark(Q′) = Q′.

2.2 Q
α7→ Q′ implies P

α7→ P ′ and P ′ = unmark(Q′) for some P ′. Moreover UE(Q′, A) ⊆ UE(Q,A)
and UE(Q′) = ∅ imples Q′ = P ′ (in this case the addition assumption that Q′ is clean is not
needed).

We prove statement 2.1 and Item 1 by induction on Q, while statement 2.2 will be proven by
induction of length of derivation Q

µ7→ Q′. The proof for Item 3 is similar to the one for 2 and
hence omitted. We proceed by case analysis on the structure of Q.

Nil, Var: Q = nilu, Q = xu. In both cases P = unmark(Q) implies P = Q and items 1. and 2. hold
trivially.

Pref: Q = µu.P1 with µ ∈ {β, β}. In both case P = unmark(Q) implies P = βu.P1. Then:

1. LE(P, A) = LE(Q,A) = {〈u〉} if β /∈ A, LE(P,A) = LE(Q,A) = ∅ otherwise.

2.1 This case is not possible since Q 6 αÃ.

2.2 Q
α7→ P1 implies α = β and hence P

β7→ P1; since P1 ∈ L(P̃1), it is also P1 = unmark(P1).
Moreover we have that UE(P1, A) = ∅ ⊆ UE(Q,A), UE(P1) = ∅ and, sure, P1 = P1.

Read: Q = µu1 .u Q1 with µ ∈ {β, β}. In both case P = unmark(Q) implies P = βu1 .u P1 where
P1 = unmark(Q1). Then:

1. LE(P, A) = {〈u1〉} ∪ LE(P1, A) = {〈u1〉} ∪ LE(Q1, A) = LE(Q,A) if β /∈ A,
LE(P, A) = LE(P1, A) = LE(Q1, A)LE(Q, A) otherwise.

2.1 Q
αÃ Q′ if either α = β and Q′ = Q or Q1

αÃ Q′
1. In the former case P

αÃ P and the
statement follows easily. In the latter one, by induction hypothesis, P1

αÃ P ′
1 with P ′

1 =
unmark(Q′

1). Thus, P
αÃ βu1 .u P ′

1 = P ′, with P ′ = βu1 .u unmark(Q′
1) = unmark(Q′).

2.2 Q
α7→ P1 implies α = β and hence P

β7→ P1; since P1 ∈ L(P̃1), it is also P1 = unmark(P1).
Moreover we have that UE(P1, A) = ∅ ⊆ UE(Q,A), UE(P1) = ∅ and, sure, P1 = P1.

Sum: Q = Q1 +u Q2. In this case, P = unmark(Q) implies Pi = unmark(Qi), for i = 1, 2, and
P = P1 +u P2.

1. By induction hypothesis LE(P,A) = LE(P1, A) ∪ LE(P2, A) = LE(Q1, A) ∪ LE(Q2, A) =
LE(Q,A), for every A.

60

2.1 By operational rules, Q
αÃ Q′ implies either (i) Q1

α7→ Q′
1 and Q′ = Q′

1 + Q2 or (ii)
Q2

α7→ Q′
2 and Q′ = Q1 + Q′

2. We only prove the former case (the latter one is similar).
By induction hypothesis, it is P1

α7→ P ′
1 with P ′

1 = unmark(Q′
1). Thus, P

α7→ P ′
1 +P2 = P ′

with P ′ = unmark(Q′
1) + unmark(Q2) = unmark(Q′

1 + Q2) = unmark(Q′).

2.2 By operational rules, Q
α7→ Q′ if either (i) Q1

α7→ Q′ or (ii) Q2
α7→ Q′. Consider the

(i)-case (the other one is similar). By induction hypothesis, Q1
α7→ Q′ implies P1

α7→ P ′

(i.e., again by operational rules P
α−→ P ′) and P ′ = unmark(Q′) for some P ′. Moreover,

again by induction hypothesis, UE(Q′, A) ⊆ UE(Q1, A) ⊆ UE(Q,A) and UE(Q′) = ∅
implies Q′ = P ′.

Par: Q = Q1‖u
BQ2. By definition unmark(Q) = unmark(Q1) ‖u

B unmark(Q2). Thus P = P1‖u
BP2,

where Pi = unmark(Qi) for every i = 1, 2. Then:

1. By induction hypothesis, LE(Pi, A∪B)∪LE(Qi, A∪B) for i = 1, 2, and, for each α ∈ B\A,
LE(P1,Aτ\{α}) × LE(P2,Aτ\{α}) = LE(Q1,Aτ\{α}) × LE(Q2,Aτ\{α}). By Definition
5.7 we can conclude that LE(P, A) = LE(Q,A).

2.1 Assume Q
αÃ Q′ and consider the following three possible cases:

i. α ∈ B and Qi
αÃ Q′

i for i = 1, 2 and Q′ = Q′
1 ‖u

B Q′
2. By induction hypothesis

Pi
αÃ P ′

i with P ′
i = unmark(Q′

i), for every i. Then: P
αÃ P ′

1 ‖u
B P ′

2 = P ′ and
P ′ = unmark(Q′).

ii. α /∈ B and Q1
αÃ Q′

1 and Q′ = Q′
1 ‖u

B Q2. By induction hypothesis P1
αÃ P ′

1 with
P ′

1 = unmark(Q′
1). Then: P

αÃ P ′
1 ‖u

B P2 = P ′ and P ′ = unmark(Q′)

iii. α 6∈ B and Q2
αÃ Q′

2 and Q′ = Q1 ‖u
B Q′

2. Similar to the previous one.

2.2 Assume Q
α7→ Q′ and consider the following three possible cases:

i. α ∈ B and Qi
α7→ Q′

i for i = 1, 2 and Q′ = clean(Q′
1 ‖u

B Q′
2). By induction hypothesis

Pi
α7→ P ′

i with P ′
i = unmark(Q′

i), UE(Q′
i, A) ⊆ UE(Qi, A) and UE(Q′

i) = ∅ implies
Q′

i = P ′
i , for every i and A. Then: P

α7→ clean(P ′
1 ‖u

B P ′
2) = P ′

1 ‖u
B P ′

2 = P ′ and
P ′ = unmark(Q′). Moreover, by Lemma A.11, it is UE(Q′, A) = UE(Q′

1 ‖u
B Q′

2, A) =
UE(Q′

1, A ∪ B) ∪ UE(Q′
2, A ∪ B) ∪ ⋃

α∈B\A(UE(Q′
1,Aτ\{α}) × UE(Q′

2,Aτ\{α}) ⊆
UE(Q1, A ∪ B) ∪ UE(Q2, A ∪ B) ∪ ⋃

α∈B\A(UE(Q1,Aτ\{α}) × UE(Q2,Aτ\{α}) =
UE(Q,A).

Now assume UE(Q′) = UE(Q′
1 ‖u

B Q′
2, A) = ∅. By Propositions 5.11-3 and A.5-3,

we also have U(Q′
1 ‖u

B Q′
2) = ∅ and Q′ = clean(Q′

1 ‖u
B Q′

2) = unmark(Q′
1 ‖u

B Q′
2) =

P ′
1 ‖u

B P ′
2 = P ′.

ii. α /∈ B and Q1
α7→ Q′

1 and Q′ = clean(Q′
1 ‖u

B Q2). By induction hypothesis P1
α7→ P ′

1

with P ′
1 = unmark(Q′

1), UE(Q′
1, A) ⊆ UE(Q1, A) for every A and UE(Q′

1) = ∅ implies
Q′

1 = P ′
1. Then: P

α7→ clean(P ′
1 ‖u

B P2) = P ′
1 ‖u

B P2 = P ′ and P ′ = unmark(Q′). Again
by Lemma A.11, it is UE(Q′, A) = UE(Q′

1 ‖u
B Q2, A) and as in the previous case we

can prove that UE(Q′
1 ‖u

B Q2, A) ⊆ UE(Q,A).

Now assume UE(Q′) = UE(Q′
1 ‖u

B Q2, A) = ∅. By Propositions 5.11-3 and A.5-3,
we also have U(Q′

1 ‖u
B Q2) = ∅ and Q′ = clean(Q′

1 ‖u
B Q2) = unmark(Q′

1 ‖u
B Q2) =

P ′
1 ‖u

B P2 = P ′.
iii. α 6∈ B and Q2

α7→ Q′
2 and Q′ = clean(Q1 ‖u

B Q′
2). Similar to the previous one.

Rel: Q = Q1[Φu]. In this case P = unmark(Q) implies P = P1[Φu] with P1 = unmark(Q1). Then:

1. By induction hypothesis LE(P, A) = LE(P1, Φ−1(A)) = LE(Q1, Φ−1(A)) = LE(Q,A).

61

2.1 By operational rules, Q
αÃ Q′

1[Φu] = Q′ if there exists β ∈ Φ−1(α) such that Q1
βÃ Q′

1.

By induction hypothesis P1
βÃ P ′

1 and P ′
1 = unmark(Q′

1) which implies P
αÃ P ′

1[Φu] = P ′

and P ′ = unmark(Q′
1)[Φu] = unmark(Q′).

2.2 By operational rules, Q
α7→ Q′

1[Φu] = Q′ if there exists β ∈ Φ−1(α) such that Q1
β7→ Q′

1.

By induction hypothesis P1
β7→ P ′

1 and P ′
1 = unmark(Q′

1) which implies P
α7→ P ′

1[Φu] = P ′

and P ′ = unmark(Q′
1)[Φu] = unmark(Q′). Again by induction hypothesis UE(Q′, A) =

UE(Q′
1, Φ

−1(A)) ⊆ UE(Q1, Φ−1(A)) = UE(Q,A) and UE(Q′) = UE(Q′
1) = ∅ implies

Q′
1 = P ′

1 and, hence, Q′ = P ′.

Rec: Q = rec xu.Q1. In this case P = unmark(Q) implies P = rec xu.P1 with P1 = unmark(Q1).

1. By induction hypothesis, LE(P, A) = LE(P1, A) = LE(Q1, A) = LE(Q,A).

2.1 Q
αÃ rec x.Q′

1 = Q′ if Q1
αÃ Q′

1. By induction hypothesis we have that P1
αÃ P ′

1 and
P ′

1 = unmark(Q′
1). Thus, P

αÃ rec x.P ′
1 = P ′ and P ′ = rec x.unmark(Q′

1) = unmark(Q′).

2.2 Let R = Q1{|rec xu.unmark(Q1)/x|} = Q1{|rec xu.P1/x|} and S = unmark(R). x action-
guarded in Q1 and Propositions A.4-2 imply UE(R,A) = UE(Q1, A) = UE(Q,A); more-
over, by Proposition A.7-2, x-action-guarded in Q1 also implies S = unmark(R) =
unmark(Q1){|rec xu.P1/x|} = P1{|rec xu.P1/x|}.
Now assume Q

α7→ Q′ and hence, by operational rules, that R
α7→ Q′. By induction

hypothesis S = unmark(R) α7→ P ′—by operational rule this also implies P
α7→ P ′—for

some P ′ with P ′ = unmark(Q′), UE(Q′, A) ⊆ U(R, A) = UE(Q,A) for every A and
UE(Q′) = ∅ implies Q′ = P ′.

2

62

H Proof of Theorem 8.2

We start with two lemmas:

Lemma H.1 Let P, P ′, P ′′ ∈ P̃1 , Q′ ∈ P̃, v, w ∈ Aτ such that P
v−→ P ′ 1−→ Q′ w−→ P ′′. Then there

exists Q ∈ P̃ such that P
1−→ Q

vw−−→ P ′′.

Proof: Let S ∈ L(P). By repeated applications of Proposition A.3-(ii), if P
v−→ P ′ (in the unlabelled

PAFASr) then S
v−→ S′ for some S′ with P ′ = R(S′) (and hence for some S′ ∈ L(P ′)).

Again due to repeated applications of Proposition A.3-(ii), if P ′ 1−→ Q′ w−→ P ′′ then there exists
R′ ∈ L(Q′) and S′′ ∈ L(P ′′) ⊆ LAB(P̃1) such that S′ 1−→ R′ w−→ S′′. Moreover, since S′′ ∈ LAB(P̃1)
implies S′′ 1−→, by Proposition B.5-2, we can conclude that S′ w−→LE(S′) S′′.

Now, S
v−→ S′ and S′ w−→LE(S′) S′′ imply S

vw−−→LE(S) S′′ (this is a trivial consequence of the

definition of B-steps) and, by Proposition B.5-1, S
1−→ R

vw−−→LE(S) S′′, Finally, by Proposition

A.3-(i) implies that P
1−→ Q

vw−−→LE(S) P ′′ where P = R(S), Q = R(R) and P ′′ = R(S′′) 2

The next lemma is a trivial consequence of the previous one.

Lemma H.2 Let S, S′, S′′ ∈ S̃1 , Q′ ∈ S̃ with S read-proper, v, w ∈ Aτ such that S
v−→ S′ 1−→ Q′ w−→

S′′. Then there exists Q ∈ S̃ such that S
1−→ Q

vw−−→ S′′.

Proof: Assume that S
v−→ S′ 1−→ Q′ w−→ S′′. Then, by Theorem 4.3-1, we also have [[S]] v−→ [[S′]] 1−→

[[Q′]] w−→ [[S′′]]. Now, by Lemma H.1, there is Q′′ ∈ P̃ such that [[S]] 1−→ Q′′ vw−−→ [[S′′]]. By Theorem
4.3-2, we have finally that there is Q ∈ S̃ with [[Q]] = Q′′ such that S

1−→ Q
vw−−→ S′′. 2

Now we can prove Theorem 8.2:

Theorem 8.2 Dekker is live iff Dekker io does not have catastrophic cycles.

Proof: Assume to the contrary that Dekker ∈ S1 and, hence, [[Dekker]] ∈ P1 are not live. According
to Theorems 6.8 and 6.9, there is a timed execution sequence with infinitely many steps along which
a process (by symmetry, we can assume it is P2) requests to enter its critical section (it performs
req2), but P2 never performs cs2 afterwards. In the following, we will prove that this timed
execution corresponds to a catastrophic cycle in the rRTS of [[Dekker io]]. Since – by Theorem 4.3
– we have RTS(Dekker io) = RTS([[Dekker io]]) as well as rRTS(Dekker io) = rRTS([[Dekker io]]), the
above result allows us to conclude the proof.

Let γ = [[Dekker]] 1−→ Q
w0−→ R0

1−→ Q0
w1−→ R1

1−→ Q1
w2−→ R2

1−→ . . . be a computation as above;
we call it a witness. Assume that the last req2 is an action of wi (for some i ≥ 0) and, hence, that
the action cs2 never occurs in wj , for any j > i.

Let w = w0w1 . . . wi. Since P
1−→ Q implies P = unmark(Q) for a generic P ∈ P̃1, repeated

application of Proposition 6.4-2 (at first to [[Dekker]] and Q) shows that [[Dekker]] can perform w
and that the process reached is unmark(Ri) = Ri (this follows since Ri ∈ P̃1 by Propositions 2.10
and 5.11); thus γ′ = [[Dekker]] w−→ Ri

1−→ Qi
wi+1−−−→ Ri+1

1−→ Qi+1
wi+2−−−→ Ri+2

1−→ . . . is also a timed
execution sequence where cs2 is pending indefinitely.

Now, assume that one or more occurrences of the τ in conflict with req2 are performed before
the last req2. Since all processes in this part of γ′ are initial, such τ ’s do not change the process;
moreover, after the last req2, there are no such τ ’s anyway. Thus, we can remove all such internal

steps and obtain a timed execution sequence γ′′ = [[Dekker]] w′−→ Ri
1−→ Qi

wi+1−−−→ Ri+1
1−→ Qi+1

wi+2−−−→
Ri+2

1−→ . . . where again cs2 is pending indefinitely (w′ is w where the τ ’s in conflict with req2 have
been removed).

63

Starting from Ri, it may either happen that both processes P1 and P2 get stuck or only process
P2 gets stuck while P1 repeatedly enters and exits its critical section. In both cases, there is a set
of states that are repeatedly entered along the computation γ′′. Without loss of generality, we may
assume that there exists j, k with i ≤ j ≤ k such that Rj = Rk+1. Hence, γ′′ = [[Dekker]] w′−→ Ri

1−→
Qi

wi+1−−−→ Ri+1
1−→ . . .

wj−→ Rj
1−→ Qj

wj+1−−−→ Rj+1
1−→ . . .

wk−−→ Rk
1−→ Qk

wk+1−−−→ Rj
1−→ . . .

Now, we change all req1 and cs1 occurring in γ′′ into τ ; we also change all req2 and cs2 into
in and out, respectively. This gives a timed execution sequence of [[Dekker io]] since the hidden and
renamed actions are not synchronised or relabelled. In our case, we obtain a computation of the
form [[Dekker io]]

v′′−→ R′
i

1−→ Q′
i

vi+1−−−→ R′
i+1

1−→ . . .
vj−→ R′

j
1−→ Q′

j

vj+1−−−→ R′
j+1

1−→ . . .
vk−→ R′

k
1−→ Q′

k

vk+1−−−→
R′

j
1−→ . . . with vi+1, . . . , vj , vj+1, . . . , vk, vk+1 ∈ {τ}∗ (recall that cs2 (out) and, hence, also req2

(in) never occur in wj (vj , resp.) for each j ≥ i). This computation demonstrates that [[Dekker io]]
has a catastrophic cycle.

Now, we prove the reverse implication. If a process reachable from Dekker io has a pending out
(corresponding to cs2), then it cannot perform in (corresponding to req2) as we can read off from
the structure of P2; thus, if such a process can refuse out, it can also refuse {in, out}. Thus, in
the reduced refusal transition system of Dekker io, all time steps are full. Hence, if there exists a
catastrophic cycle, this can be translated back to a computation of Dekker with infinitely many
time steps (all full) where either (i) P2 is stuck after performing cs2 in {kw1 .b2wf .P2, kw1 .b2wf .P2}
or in {b2wf .P2, b2wf .P2} or (ii) there is a req2 not followed by cs2. In case (ii), we obtain a
computation that is almost a witness (“almost” because it might not start with a time step); but
with Lemma H.2, we can transform the start S

v−→ S′ 1−→ Q′ w−→ S′′ to S
1−→ Q

vw−−→ S′′ and are done.
We now prove that case (i) is not possible. First, assume that P2 is stuck in {b2wf .P2, b2wf .P2},

and consider a state where P2 enters {b2wf .P2, b2wf .P2} for the last time. After the next time step, it
is in state b2wf .P2, i.e. Dekker io is in a state ((Q1 ‖ b2wf .P2) ‖B (B′1(x) ‖B′2(true) ‖K′(y)))[Φ′] where
Φ′ is the suitable (hiding and) renaming and Q1, B′1(x), B′2(true) and K′(1) are the states of the
other component processes. In particular, we have either B′2(true) = {b2rt , b2wt} . b2wf .B2(false)
or B′2(true) = {b2rt , b2wt} . b2wf .B2(false) (depending on the enabledness and hence urgency of
b2rt in Q1). Now, since the process P1 can read but not write the variable b2, the internal action
corresponding to the writing of the value false on b2 is always enabled and urgent in all the states
we can reach from Q via a sequence of internal actions due to moves of P1; thus, no further time
step is possible, a contradiction.

Second, we assume that P2 is stuck in {kw1 .b2wf .P2, kw1 .b2wf .P2}; analogously, there is a state
Q = ((Q1 ‖ kw1 .b2wf .P2) ‖B ((B′1(x) ‖B′2(true) ‖K′(y)))[Φ′] on the computation such that P2 never
performs an action again. We distinguish two further subcases:

y = 2 We reach a state like Q where y = 2. Then, either K′(y) = {kr2 , kw2} . kw1 .K(1) or
K′(y) = {kr2 , kw2} . kw1 .K(1) or K′(y) = {kr2 , kw2} . kw1 .K(1). This case is similar to
the previous one, since the process P1 never writes value 1 into the variable k; thus, kw1
remains urgent, and we again derive a contradiction.

y = 1 We do not reach a suitable state with y = 2. Then, either K′(y) = {kr1 , kw1} . kw2 .K(2) (if
the action kr1 is enabled in Q1) or K′((1) = {kr1 , kw1} . kw2 .K(2); it is not possible that Q1

enables kw2 , since then Q1 ∈ {kw2 .b1wf .P1, kw2 .b1wf .P1} and we would get to a state like Q
with y = 2 before the next time step. Thus, again kw1 remains urgent, giving a contradiction.

2

64

