Skip to main content

Fundamentals of Fractal Sets, Space-Filling Curves and Their Applications in Electronics and Communications

  • Chapter
Intelligent Computing Based on Chaos

Part of the book series: Studies in Computational Intelligence ((SCI,volume 184))

  • 1575 Accesses

Summary

Geometric objects possessing properties impossible to describe using Euclidean notion of dimensionality are wide-spread in nature and are also encountered in many scientific experiments. Mathematical description of such objects has been focus of research for very long time - probably starting with the works of Georg Cantor, through von Koch to Julia/Fatou and Sierpinski just to name the most important contributors. The notion of fractal was coined by B. Mandelbrot and it is used for description of structures having non-integer dimension. Fractal geometric objects have several intriguing properties apart from its non-integer dimension, namely they can have finite area while showing infinite perimeter or infinite area for a finite volume object. They show also the self-similarity property - similar fine structure observed at any magnification scale. We discuss also the concept of space-filling curves introduced by Peano and Hilbert providing another type of geometric constructions having no fractal dimensionality but preserving the infinite length property on a finite area. These fundamental properties of fractal objects and space-filling curves can found very interesting applications in electrical and electronic engineering. We present some of the most spectacular of these applications: 1). fabrication of very large capacitances thanks to technological possibilities of making huge conducting areas in a limited volume; 2). enhancement of attainable capacitance values in IC design thanks to usage of lateral capacitances obtained by fractioning the available chip area; 3). Fabrication of multi-band antennas with improved impedance matching in a very small volume exploiting the self-similar properties of meandering structures and packaging of very long wires in a small volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cantor, G.: Über unendliche, lineare Punktmannigfaltigkeiten V (On infinite, linear point-manifolds (sets)). Mathematische Annalen 21, 545–591 (1883)

    Google Scholar 

  2. Peitgen, H.-O., Jürgens, H., Saupe, D.: Chaos and Fractals: New Frontiers of Science, 2nd edn. Springer, N.Y. (2004)

    MATH  Google Scholar 

  3. Barnsley, M., Geronimo, J., Harrington, A.: Geometrical and electrical properties of some Julia sets. Springer Lecture Notes in Pure and Applied Mathematics, vol. 92 (1988)

    Google Scholar 

  4. Koch, H.: Sur une courbe continue sans tangente, obtenue par une construction géometrique ’el’ementaire. Arkiv för Matematik 1, 681–704 (1904)

    Google Scholar 

  5. Fatou, P.: Sur l’itération des fonctions transcendantes entie‘res. Acta Math. 47, 337–370 (1926)

    Article  MATH  MathSciNet  Google Scholar 

  6. Julia, G.: Memoire sur l’iteration des fonctions rationnelles. J. Math. 8, 47–245 (1918); see also Oeuvres de Gaston Julia. Gauthier-Villars, vol. I, Paris, pp. 121–319

    Google Scholar 

  7. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman and Company, New York (1983)

    Google Scholar 

  8. Barnsley, M.F., Devaney, R.L., Mandelbrot, B.B., Peitgen, H.O., Saupe, D., Voss, R.F., Fisher, Y., Mc Guire, M.: The Science of Fractal Images. Springer, Heidelberg (1988)

    MATH  Google Scholar 

  9. Sierpinski, W.: Sur une courbe dont tout point est un point de ramification. C.R. Acad. Paris 160, 302 (1915)

    MATH  Google Scholar 

  10. Falconer, K.: Fractal Geometry, Mathematical Foundations and Applications. Wiley, New York (1990)

    MATH  Google Scholar 

  11. Jones, H., Reeve, D.E., Saupe, D.: Fractals and Chaos. In: Crilly, A.J., Earnshaw, R.A., Jones, H. (eds.). Springer, Heidelberg (1990)

    Google Scholar 

  12. Mandelbrot, B.: The (Mis)Behavior of Markets, A Fractal View of Risk, Ruin and Reward. Basic Books (2004)

    Google Scholar 

  13. Sagan, H.: Space-Filling Curves. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  14. Bader, M.: Raumfüllende Kurven, Institut für Informatik der Technischen Universität München (2004)

    Google Scholar 

  15. Soille, P., Rivest, J.-F.: On the validity of fractal dimension measurements in image analysis. Journal of Visual Communication and Image Representation 7, 217–229 (1996)

    Article  Google Scholar 

  16. Maragos, P., Potamianos, A.: Fractal dimensions of speech sounds: Computation and application to automatic speech recognition. The Journal of the Acoustical Society of America 105, 1925 (1999)

    Google Scholar 

  17. Eftekhari, A.: Fractal Dimension of Electrochemical Reactions. Journal of the Electrochemical Society 151(9), E291–E296 (2004)

    Google Scholar 

  18. Puente, C., Pous, R., Romeu, J., García, X.: Antenas Fractales o Multifractales. Invention Patent, n?: P-9501019. Presented at the Oficina Espa?ola de Patentes y Marcas. Owner: Universitat Polit?cnica de Catalunya (May 1995)

    Google Scholar 

  19. Puente, C., Romeu, J., Pous, R., Garcia, X., Benítez, F.: Fractal Multiband Antenna Based on the Sierpinski Gasket. IEE Electronics Letters 32(1), 1–2 (1996)

    Article  Google Scholar 

  20. Puente, C., Pous, R.: Fractal Design of Multiband and Low Side-Lobe Arrays. IEEE Transactions on Antennas and Propagation 44(5), 730–739 (1996)

    Article  Google Scholar 

  21. Puente, C., Romeu, J., Bartolomé, R., Pous, R.: Perturbation of the Sierpinski antenna to allocate the operating bands. IEE Electronics Letters 32(24), 2186–2188 (1996)

    Article  Google Scholar 

  22. Puente, C., Claret, J., Sagués, F., Romeu, J., Lopez-Salvans, M.Q., Pous, R.: Multiband properties of a fractal tree antenna generated by electrochemical deposition. IEE Electronics Letters 32(5), 2298–2299 (1996)

    Article  Google Scholar 

  23. Puente, C., Romeu, J., Pous, R., Cardama, A.: Multiband Fractal Antennas and Arrays. In: Véhel, J.L., Lutton, E., Tricot, C. (eds.) Fractals in Engineering. Springer, New York (1997)

    Google Scholar 

  24. Borja, C., Puente, C., Medina, A., Romeu, J., Pous, R.: Modelo Sencillo para el Estudio de los Parámetros de Entrada de una Antena Fractal de Sierpinski. In: XII Simposium Nacional URSI, Bilbao, vol. I, pp. 363–371 (September 1997)

    Google Scholar 

  25. Puente, C., Navarro, M., Romeu, J., Pous, R.: Efecto de la Variación Angular del Vértice de Alimentación en la Antena Fractal de Sierpinski. In: XII Simposium Nacional URSI, Bilbao, vol. I, pp. 363–371 (September 1997)

    Google Scholar 

  26. Navarro, M., Puente, C., Bartolomé, R., Medina, A., Romeu, J., Pous, R.: Modificación de la Antena de Sierpinski para el Ajuste de las Bandas Operativas. In: XII Simposium Nacional URSI, Bilbao, vol. I, pp. 363–371 (September 1997)

    Google Scholar 

  27. Puente, C., Romeu, J., Pous, R., Cardama, A.: Multiband Fractal Antennas and Arrays. In: Fractals in Engineering Conference, INRIA Rocquencourt, Arcachon, France (June 1997)

    Google Scholar 

  28. Puente, C.: Fractal Antennas, Ph.D. Dissertation at the Dept. of Signal Theory and Communications, Universitat Politecnica de Catalunya (June 1997)

    Google Scholar 

  29. Puente, C., Romeu, J., Pous, R., Ramis, J., Hijazo, A.: Small but long Koch fractal Monopole. IEE Electronics Letters 34(1), 9–10 (1998)

    Article  Google Scholar 

  30. Puente, C., Romeu, J., Pous, R., Cardama, A.: On the Behavior of the Sierpinski Multiband Fractal Antenna. IEEE Trans. on Antennas & Propagation (April 1998)

    Google Scholar 

  31. Puente, C., Navarro, M., Romeu, J., Pous, R.: Variations on the Fractal Sierpinski Antenna Flare Angle. In: IEEE Antennas & Propagation - URSI Symposium Meeting, Atlanta (June 1998)

    Google Scholar 

  32. Fernández Pantoja, M., García Ruiz, F., Rubio Bretones, A., Gómez Martín, R., González-Arbesú, J.M., Romeu, J., Rius, J.M.: Member, GA Design of Wire Pre-Fractal Antennas and Comparison With Other Euclidean Geometries. IEEE Antennas and Wireless Propagation Letters 2, 238–241 (2003)

    Google Scholar 

  33. Cohen, N.: Fractal Antennas: Part 1. Communications Quarterly, 7–22 (summer 1995)

    Google Scholar 

  34. Cohen, N., Hohlfeld, R.G.: Fractal Loops And The Small Loop Approximation. Communications Quarterly, 77–81 (winter 1996)

    Google Scholar 

  35. Cohen, N.: Fractal and Shaped Dipoles. Communications Quarterly, 25–36 (spring 1996)

    Google Scholar 

  36. Cohen, N.: Fractal Antennas: Part 2. Communications Quarterly, 53–66 (summer 1996)

    Google Scholar 

  37. Kim, Y., Jaggard, D.L.: The Fractal Random Array. Proc. of the IEEE 74(9), 1278–1280 (1986)

    Article  Google Scholar 

  38. Puente, C.: Fractal Design of Multiband Antenna Arrays. Elec. Eng. Dept. Univ. Illinois, Urbana-Champaign, ECE 477 term project (December 1993)

    Google Scholar 

  39. Puente, C., Pous, R.: Dise?o Fractal de Agrupaciones de Antenas. In: IX Simposium Nacional URSI, vol. I, pp. 227–231, Las Palmas (September 1994)

    Google Scholar 

  40. Puente, C., Pous, R.: Fractal Design of Multiband and Low Side-Lobe Arrays. IEEE Transactions on Antennas and Propagation 44(5), 730–739 (1996)

    Article  Google Scholar 

  41. Goutelard, C.: Fractal theory of large arrays of lacunar antennas. In: Electromagnetic Wave Propagation Panel Symposium (AGARD-CP-528), pp. 35/1–15 (in French) (June 1992)

    Google Scholar 

  42. Lakhtakia, A., Varadan, V.K., Varadan, V.V.: Time-harmonic and time-dependent radiation by bifractal dipole arrays. Int. J. Electronics 63(6), 819–824 (1987)

    Article  Google Scholar 

  43. Allain, C., Cloitre, M.: Spatial spectrum of a general family of self-similar arrays. Physical Review A 36(12), 5751–5757 (1987)

    Article  MathSciNet  Google Scholar 

  44. Liang, X., Zhensen, W., Wenbing, W.: On the synthesis of fractal patterns from the concentric-ring array. IEE Electronics Letters 32, 1940–1941 (1996)

    Article  Google Scholar 

  45. Werner, D.H., Werner, P.L.: On the synthesis of fractal radiation patterns. Radio Science 30(1), 29–45 (1995)

    Article  Google Scholar 

  46. Werner, D.H., Haupt, R.L.: Fractal constructions of linear and planar arrays. In: 1997 IEEE Antennas and Propagation Society Symposium Digest, Montreal, Canada, pp.1968–1971 (July 1997)

    Google Scholar 

  47. Werner, D.H., Werner, P.L.: Frequency-independent features of self-similar fractal antennas. Radio Science 31(6), 1331–1343 (1996)

    Article  Google Scholar 

  48. Lakhtakia, A., Holter, N.S., Messier, R., Varadan, V.K., Varadan, V.V.: On the Spatial Fourier Transforms of the Pascal-Sierpinski Gaskets. J. Phys. A: Math. Gen. 19, 3147–3152 (1986)

    Article  MathSciNet  Google Scholar 

  49. Jaggard, D.L.: On Fractal Electrodynamics. In: Kritikos, H.N., Jaggard, D.L. (eds.) Recent Advances in Electromagnetic Theory, pp. 183–224. Springer, Heidelberg (1990)

    Google Scholar 

  50. Jaggard, D.L.: Prolog to special section on Fractals in Electrical Engineering. Proceedings of the IEEE 81(10), 1423–1427 (1993)

    Google Scholar 

  51. Jaggard, D.L., Spielman, T.: Triadic Cantor Target Diffraction. Microwave and Optical Technology Letters 5(9), 460–466 (1992)

    Article  Google Scholar 

  52. Jaggard, D.L., Spielman, T., Sun, X.: Fractal Electrodynamics and Diffraction by Cantor Targets. AP-S/URSI Comission B Meeting, London, Ontario (June 1991)

    Google Scholar 

  53. Sun, X., Jaggard, D.L.: Wave interactions with generalized Cantor bar fractal multilayers. J. Appl. Physics 70(5), 25000–25007 (1991)

    Article  Google Scholar 

  54. Jaggard, D.L., Sun, X.: Reflection from Fractal Multilayers. Optics Letters 15(24) (December 1990)

    Google Scholar 

  55. Jaggard, D.L.: Fractal Electrodynamics: Wave Interactions with Discretely Self-Similar Structures. In: Baum, C., Kritikos, H. (eds.) Electromagnetic Symmetry, ch. 5. Taylor and Francis Publishers, Abington (1995)

    Google Scholar 

  56. Berry, M.V.: Diffractals. J. Phys. A: Math. Gen. 12, 781–797 (1979)

    Article  MathSciNet  Google Scholar 

  57. Berry, M.V., Blackwell, T.M.: Diffractal Echoes. J. Phys. A: Math. Gen. 14, 3101–3110 (1981)

    Article  MathSciNet  Google Scholar 

  58. Allain, C., Cloitre, M.: Optical Fourier Transforms of Fractals. In: Pietronero, L., Tossatti, E. (eds.) Fractal Physics. North-Holland, New York (1986)

    Google Scholar 

  59. Bedrosian, S.D., Sun, X.: Theory and Application of Pascal-Sierpinski Gasket Fractals. Circuits Syst., Sig. Processing 9, 147–159 (1990)

    Google Scholar 

  60. Bedrosian, S.D., Sun, X.: Pascal-Sierpinski Gasket Fractal Networks: Some Resistance Properties. J. Franklin Inst. 326, 503–509 (1989)

    Article  Google Scholar 

  61. Falco, T., Francis, F., Lovejoy, S., Schertzer, D., Kerman, B., Drinkwater, M.: Universal Multifractal Scaling of Synthetic Aperture Radar Images of Sea-Ice. IEEE Transactions on Geoscience and Remote Sensing 34(4) (July 1996)

    Google Scholar 

  62. Stewart, C.V., Moghaddam, B., Hintz, K.J., Novak, L.M.: Fractional Brownina Motion Models for Synthetic Aperture Radar Imagery Scene Segmentation. Proc. IEEE 81, 1511–1522 (1993)

    Article  Google Scholar 

  63. Puente, C., Romeu, J., Pous, R., Cardama, A.: On the Behavior of the Sierpinski Multiband Fractal Antenna. IEEE Transactions on Antennas and Propagation 46(4), 517–524 (1998)

    Article  MATH  Google Scholar 

  64. Puente, C., Romeu, J., Pous, R., Ramis, J., Hijazo, A.: Small but long Koch fractal monopole. IEEE Electronics Letters 34(1), 9–10 (1998)

    Article  Google Scholar 

  65. Puente, C., Pous, R., Romeu, J., Garcia, X.: Antenas Fractales o Multifractales. Invention Patent, n: P-9501019

    Google Scholar 

  66. Gianvittorio, J.J.P., Samii, Y.R.: Fractal Antennas: A Novel Antenna Miniaturization Technique and Applications. IEEE Antennas and Propagation Magazine 44(1), 20–37 (2002)

    Article  Google Scholar 

  67. Chen, X., Safavi-Naeini, S., Liu, Y.: A down-sized printed Hilbert antenna for UHF band. In: 2003 IEEE Int. Conference on Antennas and Propagation, Columbus, vol. 2, pp. 581–584 (2003)

    Google Scholar 

  68. WEB site of Fractal Antenna Systems, Inc., Fort Lauderdale, FL, www.fractenna.com

  69. WEB site of Fractus S. A. Barcelona, Spain, www.fractus.com

  70. Gassmann, F., Kötz, R., Wokaun, A.: Supercapacitors boost the fuel cell car. Europhysics News 34(5), 176–180 (2003), http://ecl.web.psi.ch/index.html

    Article  Google Scholar 

  71. Pfeifer, P., Ehrburger-Dolle, F., Rieker, T.P., González, M.T., Hoffman, W.P., Molina-Sabio, M., Rodríguez-Reinoso, F., Schmidt, P.W., Voss, D.J.: Nearly Space-Filling Fractal Networks of Carbon Nanopores. Physical Review Letters 88(11) (2002)

    Google Scholar 

  72. Samavati, H., Hajimiri, A., Shahani, A.R., Nasserbakht, G.N., Lee, T.H.: Fractal Capacitors. IEEE J. of Solid-State Circ. 33(12), 2035–2041 (1998)

    Article  Google Scholar 

  73. Aparicio, R., Hajimiri, A.: Capacity Limits and Matching Properties of Integrated Capacitors. IEEE J. of Solid-State Circ. 37(3), 383–392 (2002)

    Google Scholar 

  74. Shahani, A.R., Lee, T.H., Samavati, H., Shaeffer, D.K., Walther, S.: US Patent 6084285 - Lateral flux capacitor having fractal-shaped perimeters

    Google Scholar 

  75. Shahani, A.R., Lee, T.H., Samavati, H., Shaeffer, D.K., Walther, S.: US Patent 6028990 - Method and apparatus for a lateral flux capacitor

    Google Scholar 

  76. Veeraswamy, V.S.: Rain sensor with fractal capacitor(s) - US Patent 20070157720

    Google Scholar 

  77. FRACTALCOMS: Exploring the limits of Fractal Electrodynamics for the future telecommunication technologies IST-2001-33055, FInal Report Task 4.3 by J. M. González, J. Romeu, E. Cabot and J. R. Mosig

    Google Scholar 

  78. Tsachtsiris, G., Soras, C., Karaboikis, M., Makios, V.: Reduced Size Fractal Rectangular Curve Patch Antenna. In: Proc. EMC 2003 IEEE International Symposium on Electromagnetic Compatibility, vol. 2, pp. 912–915 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ogorzałek, M.J. (2009). Fundamentals of Fractal Sets, Space-Filling Curves and Their Applications in Electronics and Communications. In: Kocarev, L., Galias, Z., Lian, S. (eds) Intelligent Computing Based on Chaos. Studies in Computational Intelligence, vol 184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-95972-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-95972-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-95971-7

  • Online ISBN: 978-3-540-95972-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics