Report: Measuring the Attack Surfaces of
Enterprise Software

Pratyusa K. Manadhata', Yuecel Karabulut?, and Jeannette M. Wing!

! Carnegie Mellon Univeristy, Pittsburgh, PA, USA
2 SAP Research, Palo Alto, CA, USA

Abstract. Software vendors are increasingly concerned about mitigat-
ing the security risk of their software. Code quality improvement is a tra-
ditional approach to mitigate security risk; measuring and reducing the
attack surface of software is a complementary approach. In this paper, we
apply a method for measuring attack surfaces to enterprise software writ-
ten in Java. We implement a tool as an Eclipse plugin to measure an SAP
software system’s attack surface in an automated manner. We demon-
strate the feasibility of our approach by measuring the attack surfaces
of three versions of an SAP software system. We envision our measure-
ment method and tool to be useful to software developers for improving
software security and quality.

1 Introduction

There is a growing demand for secure software as we are increasingly dependent
on software in our day-to-day life. Software vendors have traditionally focused
on improving code quality for improving software security and quality. The code
quality improvement effort aims toward reducing the number of security vulner-
abilities in software. In practice, however, building large and complex software
devoid of vulnerabilities remains a very difficult task. Software vendors have to
embrace the hard fact that their software will ship with both known and future
vulnerabilities in them and many of the vulnerabilities will be discovered and
exploited. They can, however, minimize the risk associated with the exploita-
tion of these vulnerabilities. One way to minimize the risk is by reducing the
attack surfaces of their software. A smaller attack surface makes the exploita-
tion of the vulnerabilities harder and lowers the damage of exploitation, and
hence mitigates the security risk. As shown in Figure 1, the code quality effort
and the attack surface reduction approach are complementary; a complete risk
mitigation strategy requires a combination of both.

Michael Howard of Microsoft introduced the notion of Relative Attack Sur-
face Quotient (RASQ) for the Windows operating system [1]. Pincus and Wing
generalized Howard’s notion and measured the attack surfaces of seven versions
of Windows [2]. Their measurement method, however, was ad-hoc in nature, re-
quired a security expert (e.g., Michael Howard for Windows), and was focused on
operating systems. Manadhata and Wing of Carnegie Mellon University (CMU)

Bad| Medium High
Security Risk | Security Risk
Code
Quality

Low Medium

Good Security Risk | Security Risk

Low High
Attack Surface Measurement

Fig. 1. Attack Surface Reduction and Code Quality Improvement are complementary
approaches for improving software security.

formalized Howard’s notion and proposed an abstract but systematic attack
surface measurement method that does not require a security expert and is ap-
plicable to a wide range of software [3].

Intuitively, a system’s attack surface is the set of ways in which an adversary
can enter the system and potentially cause damage. A larger attack surface
measurement indicates that an attacker is likely to exploit the vulnerabilities
present in the system with less effort and cause more damage to the system.
Since a system’s code is likely to contain vulnerabilities, it is prudent to reduce
the system’s attack surface measurement in order to mitigate the security risk.

To see how well our attack surface method works on enterprise-scale soft-
ware, SAP and CMU collaborated to apply CMU’s attack surface measurement
method to SAP’s platforms and business applications. Henceforth, we collec-
tively refer to SAP’s platforms and business applications as SAP software sys-
tems. This collaboration suggested ways to integrate the measurement process
with software development process, not just for SAP, which we discuss in Section
6. We describe the collaboration in the rest of this report.

2 Abstract Attack Surface Measurement Method

We briefly describe Manadhata and Wing’s abstract measurement method in
this section. Please see their technical report for details [3].

We know from the past that many attacks, e.g., exploiting a buffer overflow,
on a system take place by sending data from the system’s operating environment
into the system. Similarly, many other attacks, e.g., symlink attacks, on a system
take place because the system sends data into its environment. In both these
types of attacks, an attacker connects to a system using the system’s channels
(e.g., sockets), invokes the system’s methods (e.g., API), and sends data items
(e.g., input strings) into the system or receives data items from the system. Hence
an attacker uses a system’s methods, channels, and data items present in the
system’s environment to attack the system. We collectively refer to a system’s
methods, channels, and data items as the system’s resources and thus define

a system’s attack surface in terms of the system’s resources. Not all resources,
however, are part of the attack surface. Manadhata and Wing use the entry point
and exit point framework to identify the resources that are part of a system’s
attack surface.

Entry Points Each system has a set of methods. A method receives arguments
as input and returns results as output. Examples of methods are the API of a
system. A system’s methods that receive data items from the system’s environ-
ment are the system’s entry points. For example, a method that receives input
from a user or a method that reads a configuration file is an entry point. A
method m of a system s is a direct entry point if either (a) a user or a system
in $’s environment invokes m and passes data items as input to m, or (b) m
reads from a persistent data item, or (c¢) m invokes the APT of a system in s’s
environment and receives data items as the result returned. An indirect entry
point is a method that receives data from a direct entry point.

Exit Points A system’s methods that send data items to the system’s environ-
ment are the system’s exit points. For example, a method that writes into a log
file is an exit point. A method m of a system s is a direct exit point if either (a) a
user or a system in s’s environment invokes m and receives data items as results
returns from m, or (b) m writes to a persistent data item, or (c) m invokes the
API of a system in s’s environment and passes data items as input to the API.
An indirect exit point is a method that sends data to a direct exit point.

Channels Each system also has a set of channels; the channels are the means by
which users or other systems in the environment communicate with the system.
Examples of channels are TCP/UDP sockets, RPC end points, and named pipes.
An attacker uses a system’s channels to connect to the system and attack the
system. Hence a system’s channels act as another basis for attacks.

Untrusted Data Items An attacker uses persistent data items either to send
data indirectly into the system or receive data indirectly from the system. Ex-
amples of persistent data items are files, cookies, database records, and registry
entries. A system might read from a file after an attacker writes into the file.
Similarly, the attacker might read from a file after the system writes into the file.
Hence the persistent data items act as another basis for attacks on a system. An
untrusted data item of a system s is a persistent data item d such that a direct
entry point of s reads from d or a direct exit point of s writes into d.

Attack Surface Definition By definition, the set, M, of entry points and exit
points, the set, C, of channels, and the set, I, of untrusted data items are the
resources that the attacker can use to either send data into the system or receive
data from the system and hence attack the system. Hence given a system, s, and
its environment, we define s’s attack surface as the triple, (M, C,I).

Attack Surface Measurement Method Not all resources contribute equally
to a system’s attack surface. Manadhata and Wing estimate a resource’s con-
tribution to a system’s attack surface as a damage potential-effort ratio where
damage potential is the level of harm the attacker can cause to the system in
using the resource in an attack and effort is the amount of work done by the
attacker to acquire the necessary access rights in order to be able to use the
resource in an attack.

In practice, we estimate a resource’s damage potential and effort in terms
of the resource’s attributes. Examples of attributes are method privilege, access
rights, channel protocol, and data item type. In case of systems implemented in
C, we estimate a method’s damage potential in terms of the method’s privilege.
An attacker gains the same privilege as a method by using a method in an attack.
For example, the attacker gains root privilege by exploiting a buffer overflow in
a method running as root and hence causes damage to the system. Similarly, we
estimate a channel’s damage potential in terms of the channel’s protocol and a
data item’s damage potential in terms of the data item’s type. The attacker can
use a resource in an attack if the attacker has the required access rights. The
attacker spends effort to acquire these access rights. Hence for the three kinds of
resources, i.e., method, channel, and data, we estimate attacker effort in terms
of the resource’s access rights. We assign numeric values to the attributes to
compute a numeric damage potential-effort ratio. We describe a specific method
of assigning numbers in Section 4.2.

Our abstract measurement method has the following three steps.

1. Given a system, s, and its environment, we identify a set, M, of entry points
and exit points, a set, C, of channels, and a set, I, of untrusted data items
of s.

2. We estimate the damage potential-effort ratio, der,,(m), of each method
m € M, the damage potential-effort ratio, der.(c), of each channel ¢ € C,
and the damage potential-effort ratio, dery(d), of each data item d € I.

3. The measure of s’s attack surface is the triple (> derp,(m), > der.(c),

meM ceC
> derq(d)).
del

3 Measurement Method for SAP Software Systems

In this section, we walk through the steps of our method for measuring the
attack surfaces of software services written in Java. We keep our discussion
general, bringing in the specifics of the SAP application only where necessary.

In our SAP collaboration, we chose a component of the SAP NetWeaver plat-
form as the system whose attack surface is to be measured [4]. The component is
a core building block of the platform; henceforth, we refer to the chosen compo-
nent as the service. The service does not use any persistent data items and opens
only one channel, i.e., a TCP socket. Hence we only considered the method di-
mension of the attack surface in our measurement. We would, however, consider
the three dimensions of the attack surface for a generic Java system.

3.1 Identification of Entry Points and Exit Points

An entry point of a system is a method that receives data items from the system’s
environment. A method, m, of a system, s, implemented in Java can receive
data items in three different ways: (a) m is a method in s’s public interface and
receives data items as input, (b) m invokes a method in the interface of a system,
§’, in the environment and receives data items as result, and (¢) m invokes a
Java I/0 library method. For example, a method, m, is an entry point if m
invokes the read method of the java.io.DataInputStrean class.

An exit point of a system is a method that sends data items to the system’s
environment. A method, m, of a system, s, implemented in Java can send data
items in three different ways: (a) m is a method in s’s public interface and sends
data items as result, (b) m invokes a method in the interface of a system, s’, in
the environment and sends data items as input, and (¢) m invokes a Java I/0
library method. For example, a method, m, is an exit point if m invokes the
write method of the java.io.DataOutputStreanm class.

Given a system, s, we generate s’s call graph starting from the methods in
s’s public interface. From the call graph, we identify all methods of s that invoke
either a method in the interface of a system, s’, in s’s environment or a Java
I/0 library method. These methods are s’s entry points and exit points.

3.2 Estimation of the Damage Potential-Effort Ratio

We estimate a method’s damage potential using the method’s sources of input
data (destinations of output data). A method can receive (send) data items from
(to) three sources: an input parameter, the data store, and other systems present
in the environment. For example, a method receives data items from an attacker
as an input parameter in case of SQL injection attacks whereas the method
receives data items from the data store in case of File Existence Check attacks.
We do not use method privilege to estimate damage potential because the entire
code of the NetWeaver platform runs with the same privilege and hence we can
not make any meaningful suggestions to reduce the attack surface.

Similar to systems implemented in C, we use a method’s access rights level
to estimate the attacker effort. A typical SAP system has two different types of
interfaces: (1) public interfaces that can be accessed by all entities belonging to
any NetWeaver role and (2) internal interfaces that can be accessed by only other
components of the NetWeaver platform. Hence the methods in SAP systems can
be accessed with two different access rights levels: public access rights level for
methods in public interfaces and internal access rights level for methods in
internal interfaces.

We assign numeric values to sources of inputs and access rights levels to com-
pute numeric damage potential-effort ratios. The choice of the numbers depends
on a system and its environment. We discuss a specific way of assigning numeric
values in case of the service in Section 4.2.

4 Implementation of a Measurement Tool

In this section, we describe a tool we implemented to measure the attack surfaces
of software systems implemented in Java. We implemented our tool as a plugin
for the Eclipse Integrated Development Environment (IDE) so that software
developers can use the tool inside their software development environment [5].
We show a screen shot of our tool in Figure 2.

& Java - EclipseASM.java - Eclipse SDK =101 x|
File Edit Source Refactor Mavigats Search Project Run ClassidarLocator Window Help

- -0 -Q - e L : L S| »
INw; [%-0-a | G rves et F4 gl
J Han Sl e % Open Call Hierarchy Chrl+Al+H 'a Browsing

[% Packag... 82T O|[[1] Eclpseasijavs 53 of i Chle a
T //this method = Copy Chrl+C " e T

les

TN I Jithe paramete s Chrlsy ic : boolean A
5120 NS_s /7 IHethod main hneterWeight : double
T NS //string ourrs % Delsie Bt Ktoreweight : double
tack Source P Lsystemiieight : doul
»

ks ste public boolean Refactor EsRights\veight | dou
B} tacle core String teiethods | ink

B tarle example PR * Liorebtethods : Hash:

11 tacle.examples isPuplic = Declarations ¥ Lsystemtethods : Ha
I Fopen out | OuurencesinFie » BotFis(string)

Bufferedlr oo Method Breckpoint fsMFie(string)

if fout == ;
- w1 Tadensm, - Attack Surface Measurement (Eclipse APT) | s le(Euferedrl
B[tacle example: 3 Attack Surfacs Measurement (TACLE) otFile(Sting, String
&5 taclenternalr Rin Az » i
&1 [tacleinternal.s Debug As » bofParameter(IMemt
t 1
i tade.internal i i zf;g zaf (e » ftsourceMethod{Meth
B4 Plug-in Dependenc; et Replace With » bmpletetame{Msthor

i JRE System Librar, brmplethame{ IMsth

Bugger Restors From Local History, .

~[ih buid.properties - et} , Strin]
I plugin ol String str = in.readbine(): @ computensM(Iiethod) |
S A o s e
4 | ;l_l « | >
a |] [[L Problems 92 CalHerarchy | Analysis keys | search | 7 =0

Fig. 2. Screenshot of the Attack Surface Measurement tool implemented as an Eclipse
plugin.

4.1 Call Graph Generation

A key component of our tool is the generation of a system’s call graph from the
system’s source code. We use two different techniques to generate the call graph
to provide a precision-scalability tradeoff to the software developers: the TACLE
Eclipse plugin developed at the Ohio State University, which gives a very precise
call graph, but does not scale well to large programs [6]; and an Eclipse API,
which gives a less precise call graph, but scales [7].

The TACLE based approach results in a precise attack surface measurement
whereas the Eclipse API based approach results in an over-approximation of
the measurement. The two approaches are complementary; software developers
can use the Eclipse API based approach to produce an imprecise measurement
of a large software system, and then use the TACLE based approach to obtain
precise measurements of the components that make large contributions to the
measurement. The imprecise measurement guides the developers to the relevant
components of a system and the precise measurement guides the developers in
reducing the attack surface.

Our tool identifies a system’s entry points and exit points from the system’s
call graph. A method of a system is an entry point (exit point) if the method
invokes a method in the public interface of another system present in the en-
vironment or a Java I/0 library method. Hence we provide our tool the list
of interface methods of other systems and the list of Java I/0 library methods
through two configuration files. Our approach of identifying entry points and
exit points is applicable to generic Java systems and is independent of SAP
software systems.

4.2 Numeric Value Assignment

Another key component of our tool is the estimation of the numeric damage
potential-effort ratios of a system’s entry points and exit points. The tool de-
termines the sources of input and the access rights levels from the system’s
call graph; the tool, however, requires the numeric values assigned to the dif-
ferent sources of input and the access rights levels to estimate numeric damage
potential-effort ratios. Users of our tool would choose the numbers based on the
knowledge of their system and its environment.

The methods of the service have three different sources of input: parameter,
data store, and other system. As discussed in Section 3.2, different types of
attacks on the service require the methods to have different sources of input.
We assign numeric values to the sources of input by correlating the sources
with possible attacks on the service. SAP conducted an internal threat modeling
process for the service. The process identified possible attacks on the service and
assigned severity ratings to the attacks. We correlated the sources of inputs with
the possible attacks identified by the threat modeling process. For each source
of input, we computed the average severity rating of the attacks that require the
source of the input. We show the sources of input in the first column and the
average severity ratings in the second column of Table 1.

We assigned numeric values to the sources of input in proportion to the
average severity ratings. Manadhata and Wing’s parameter sensitivity analysis
suggests that the difference between the numeric values assigned to successive
damage potential levels should be in the range of 3-14 [8]. Hence we chose the
midpoint, 8.5, of the range as the difference. For example, we assigned 1 to the
source other system, and 1+ (3 —1) x 8.5 = 18 to the source data store. We
show the numeric values in third column of Table 1.

Source of Input|Average Sever-|Value
put). B¢ Access Rights|Value
ity Rating -

public 1
other system |1 1 -

internal 18
data store 3 18 -

Table 2. Numeric val-

parameter 5 35

ues assigned to the access

Table 1. Numeric values assigned to the sources of .
rights levels.

input.

The methods of the service can be accessed by two different access rights
level: public and internal. We imposed the following total ordering among
the access rights level: internal > public. The parameter sensitivity analysis
suggests that the difference between the numeric values assigned to successive
access rights level should be high (15-20). Hence we chose a difference of 17. We
show the numeric values assigned to the access rights level in Table 2.

We use the numeric values shown in Table 1 and Table 2 to compute the
numeric damage potential-effort ratios. For example, consider an entry point, m,
of a system, s. m is a method in s’s public interface and has two input parameters;
m also invokes three interface methods of a system, s’, in the environment.
Then m’s damage potential is 2 x 35 + 3 x 1 = 73. If m is accessible with the
public access rights level, then m’s damage potential-effort ratio is 73/1 = 73.
Similarly, if m is accessible with the internal access rights level, then m’s
damage potential-effort ratio is 73/18 = 4.05.

4.3 Usage of the Tool and Measurements

Software developers can use our tool to measure and reduce a system’s attack
surface. The tool generates detailed output containing (1) the system’s attack
surface measurement, (2) a list of the system’s entry points and exit points,
and (3) for each entry point (exit point), a list of input sources, the access
rights level, and its contribution to the attack surface measurement. Software
developers can use the detailed output as a guide in reducing the attack surfaces
of their software. For example, they can focus on the top x% of the entry points
and the exit points to reduce the attack surface. They can also focus on the top
contributing interfaces and components instead of considering the entire code
base of the system. We are currently working on a visualization tool to guide
the developers to the relevant parts of the code base.

The tool also allows the developers to consider many what-if scenarios dur-
ing software development. For example, the developers can easily determine the
effect of adding a new feature to the system on the system’s attack surface. Simi-
larly, while reducing the attack surface, they can consider the removal of different
features and the effect of the removal on the attack surface measurement. They
can use the incremental measurements to make an informed decision.

5 Results and Discussion

We measured the attack surfaces of three different of the service included in three
different versions of the NetWeaver platform. We identify the three versions of
the service as S1, 82, and S3. The S1 version is the first released version of the
service, followed by S2 and S3 versions, respectively.

The S3 version of the service implements 8 public interfaces and 2 internal
interfaces. The S2 and S1 versions implement 9 and 8 public interfaces, respec-
tively, and no internal interfaces. We show the number of entry points and exit
points of the three versions for each access rights level in Table 3. We estimated

the damage potential-effort ratio of each entry point (exit point) to compute the
attack surface measurements; we show the measurements in Table 4.

Version Count
Public Internal Version|Attack Surface Measurement
S3 71 4 S3 5298.44
S2 67 0 S2 4687.00
S1 63 0 S1 4649.00
Table 3. The number of entry Table 4. Attack surface measurements.

points and exit points.

The S2 version is backward compatible with S1 for the convenience of the
customers. Moreover, S2 added new features to S1 resulting in an increase in the
number of public interfaces. Hence the set of methods of S2 is a superset of the
set of methods of S1 and as shown in Table 4, the attack surface measurement
of S2 is greater than S1.

The 83 version differs from the S2 version in two significant ways: (1) S3
converted a public interface of S2 to an internal interface to mitigate security
risk, and (2) 83 added new features to the service resulting in an increase in
the number of public interfaces and internal interfaces. If no new features were
added, the attack surface measurement of S3 would have been smaller than S2
due to the conversion of a public interface to an internal interface. The increase
in the number of total interfaces due to the addition of new features, however,
increases the attack surface measurement of S3. Hence as shown in Table 4, the
attack surface measurement of S3 is greater than S2.

The measurement results show that addition of new features will increase
a software system’s attack surface measurement. Software developers should,
however, aim to minimize the increase in the attack surface. SAP’s developers
made a good design decision by introducing internal interfaces that reduced the
increase in the attack surface measurement.

6 Potential Usage of Attack Surface Measurements

We envision three potential uses of attack surface measurements in the software
development process. First, software developers and architects can use attack
surface measurements to prioritize their software testing effort. For example, if a
system’s attack surface measurement is high, they should invest more in testing
efforts to identify and remove vulnerabilities from the system. Similarly, if the
measurement is low, they can reduce their testing effort.

Second, software developers can use attack surface measurements as a guide
while implementing patches of security vulnerabilities. A good patch should not
only remove a vulnerability from a system, but also should not increase the
system’s attack surface. Software developers can use our tool to ensure that
their patches do not increase the attack surface.

Third, software consumers can use attack surface measurements to guide
their choice of software configuration. Choosing a suitable configuration, espe-
cially for complex enterprise-scale software, is a nontrivial task. Since a system’s
attack surface measurement is dependent on the system’s configuration, software
consumers would choose a configuration that results in a smaller attack surface
exposure.

7 Summary and Future Work

In summary, we introduced a method to measure the attack surfaces of SAP
software systems implemented in Java and implemented a tool to measure the
attack surface in an automated manner. We demonstrated the use of the method
and the tool by measuring and comparing the attack surfaces of three versions of
an SAP software system. We also learned important lessons on how to improve
the method and the tool to make them more useful in practice.

Based on the feedback received from SAP developers, we identify four pos-
sible avenues of future work. First, we plan to extend the tool to measure the
attack surfaces of software implemented in other languages such as JavaScript.
Second, Manadhata and Wing performed three empirical studies to validate the
abstract measurement method and the measurement results of systems imple-
mented in C [8]. A possible direction of future research is to explore validation
ideas in the context of SAP business applications. Third, we plan to extend
our work by developing a method to estimate the minimum and the maximum
possible attack surface measurements of a system given the system’s function-
ality. The minimum and maximum estimates will be useful in guiding attack
surface reduction and test effort prioritization. Fourth, we plan to investigate
code analysis techniques to identify a system’s indirect entry points and indirect
exit points in an automated manner.

References

1. Howard, M.: Fending off future attacks by reducing attack surface.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
dncode/html/secure02132003.asp (2003)

2. Howard, M., Pincus, J., Wing, J.: Measuring relative attack surfaces. In: Proc. of
Workshop on Advanced Developments in Software and Systems Security. (2003)

3. Manadhata, P.K., Kaynar, D.K., Wing, J.M.: A formal model for a system’s attack
surface. Technical Report CMU-CS-07-144, CMU (July 2007)

4. AG, S.: NetWeaver. http://www.sap.com/platform/netweaver/index.epx

5. Eclipse: Eclipse - An open development platform. http://www.eclipse.org/

6. Sharp, M., Sawin, J., Rountev, A.: Building a whole-program type analysis in
Eclipse. In: Eclipse Technology Exchange Workshop at OOPSLA. (2005) 6-10

7. Eclipse: Eclipse package org.eclipse.jdt.internal.corext.callhierarchy.
http://mobius.inria.fr/eclipse-doc/org/eclipse/jdt/internal/corext/
callhierarchy/package-summary.html

8. Manadhata, P.K., Tan, K.M., Maxion, R.A., Wing, J.M.: An approach to measuring
a system’s attack surface. Technical Report CMU-CS-07-146, CMU (2007)

