Skip to main content

Colinear Coloring on Graphs

  • Conference paper
WALCOM: Algorithms and Computation (WALCOM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5431))

Included in the following conference series:

  • 888 Accesses

Abstract

Motivated by the definition of linear coloring on simplicial complexes, recently introduced in the context of algebraic topology, and the framework through which it was studied, we introduce the colinear coloring on graphs. We provide an upper bound for the chromatic number χ(G), for any graph G, and show that G can be colinearly colored in polynomial time by proposing a simple algorithm. The colinear coloring of a graph G is a vertex coloring such that two vertices can be assigned the same color, if their corresponding clique sets are associated by the set inclusion relation (a clique set of a vertex u is the set of all maximal cliques containing u); the colinear chromatic number λ(G) of G is the least integer k for which G admits a colinear coloring with k colors. Based on the colinear coloring, we define the χ-colinear and α-colinear properties and characterize known graph classes in terms of these properties.

This research is co-financed by E.U.-European Social Fund (75%) and the Greek Ministry of Development-GSRT (25%).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boesch, F.T., Gimpel, J.F.: Covering the points of a digraph with point-disjoint paths and its application to code optimization. J. of the ACM 24, 192–198 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  3. Brooks, R.L.: On colouring the nodes of a network. Proc. Cambridge Phil. Soc. 37, 194–197 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chvátal, V., Hammer, P.L.: Aggregation of inequalities for integer programming. Ann. Discrete Math. I, 145–162 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Civan, Y., Yalçin, E.: Linear colorings of simplicial complexes and collapsing. J. Comb. Theory A 114, 1315–1331 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Csorba, P., Lange, C., Schurr, I., Wassmer, A.: Box complexes, neighborhood complexes, and the chromatic number. J. Comb. Theory A 108, 159–168 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980); annals of Discrete Mathematics, 2nd edn., vol. 57. Elsevier (2004)

    Google Scholar 

  8. Hopcroft, J., Karp, R.M.: A n 5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Computing 2, 225–231 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kneser, M.: Aufgabe 300. Jahresbericht der Deutschen Mathematiker-Vereinigung 58, 2 (1955)

    Google Scholar 

  10. Lovász, L.: Kneser’s conjecture, chromatic numbers and homotopy. J. Comb. Theory A 25, 319–324 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Matoušek, J., Ziegler, G.M.: Topological lower bounds for the chromatic number: a hierarchy. Jahresbericht der Deutschen Mathematiker-Vereinigung 106, 71–90 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Nikolopoulos, S.D.: Recognizing cographs and threshold graphs through a classification of their edges. Inform. Proc. Lett. 74, 129–139 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ziegler, G.M.: Generalised Kneser coloring theorems with combinatorial proofs. Inventiones mathematicae 147, 671–691 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ioannidou, K., Nikolopoulos, S.D. (2009). Colinear Coloring on Graphs. In: Das, S., Uehara, R. (eds) WALCOM: Algorithms and Computation. WALCOM 2009. Lecture Notes in Computer Science, vol 5431. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00202-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00202-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00201-4

  • Online ISBN: 978-3-642-00202-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics