Skip to main content

A Fully Dynamic Graph Algorithm for Recognizing Proper Interval Graphs

  • Conference paper
WALCOM: Algorithms and Computation (WALCOM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5431))

Included in the following conference series:

Abstract

We present a fully dynamic graph algorithm to recognize proper interval graphs that runs in O(logn) worst case time per edge update, where n is the number of vertices in the graph. The algorithm also maintains the connected components and supports connectivity queries in O(logn) time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees. In: Graph Theory and Sparse Matrix Computation, vol. 56, pp. 1–29. Springer-Verlag, New York (1993)

    Chapter  Google Scholar 

  2. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Computer and System Sciences 13, 335–379 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press and McGraw-Hill Book Co., Cambridge (2001)

    MATH  Google Scholar 

  4. Corneil, D.G., Kim, H., Nataranjan, S., Olariu, S., Sprague, A.P.: Simple linear time recognition of unit interval graphs. Information Processing Letters 55, 99–104 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Corneil, D.G., Olariu, S., Stewart, L.: The ultimate interval graph recognition algorithm? In: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 175–180 (1998)

    Google Scholar 

  6. Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs. SIAM J. Computing 25(2), 390–403 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. In: Atallah, M.J. (ed.) Algorithms and Theory of Computation Handbook, ch. 8. CRC Press, Boca Raton (1998)

    Google Scholar 

  8. Feigenbaum, J., Kannan, S.: Dynamic graph algorithms. In: Rosen (ed.) Handbook of Discrete and Combinatorial Mathematics, ch. 17. CRC Press, Boca Raton (1999)

    Google Scholar 

  9. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. In: Annals of Discrete Mathematics, vol. 57. Elsevier B.V., Amsterdam (2004)

    Google Scholar 

  10. Hell, P., Shamir, R., Sharan, R.: A fully dynamic algorithm for recognizing and representing proper interval graphs. SIAM J. Computing 31, 289–305 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hsu, W.L.: On-line recognition of interval graphs. In: Deza, M., Manoussakis, I., Euler, R. (eds.) CCS 1995. LNCS, vol. 1120, pp. 27–38. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  12. Hsu, W.L., Ma, T.H.: Fast and simple algorithms for recognizing chordal comparability graphs and interval graphs. SIAM J. Computing 28(3), 1004–1020 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ibarra, L.: The clique-separator graph for chordal graphs (submitted, 2006), http://facweb.cs.depaul.edu/ibarra/research.htm

  14. Ibarra, L.: A fully dynamic graph algorithm for recognizing interval graphs (submitted, 2007), http://facweb.cs.depaul.edu/ibarra/research.htm

  15. Ibarra, L.: Fully dynamic algorithms for chordal graphs and split graphs. ACM Transactions on Algorithms 4(4), 1–20 (2008), http://facweb.cs.depaul.edu/ibarra/research.htm

    Article  MathSciNet  Google Scholar 

  16. Ibarra, L.: A simple algorithm to find Hamiltonian cycles in proper interval graphs (submitted, 2008), http://facweb.cs.depaul.edu/ibarra/research.htm

  17. Ibarra, L.: A simple fully dynamic graph algorithm for recognizing proper interval graphs (submitted, 2008), http://facweb.cs.depaul.edu/ibarra/research.htm

  18. Johnson, D.S.: The NP-completeness column: an ongoing guide. J. Algorithms 6, 434–451 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Korte, N., Möhring, R.H.: An incremental linear-time algorithm for recognizing interval graphs. SIAM J. Computing 18(1), 68–81 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. McKee, T.A., McMorris, F.R.: Topics in Intersection Graph Theory, Philadelphia. Society for Industrial and Applied Mathematics (1999) (Monograph)

    Google Scholar 

  21. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Computing 5(2), 266–283 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Computing 13(3), 566–579 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ibarra, L. (2009). A Fully Dynamic Graph Algorithm for Recognizing Proper Interval Graphs. In: Das, S., Uehara, R. (eds) WALCOM: Algorithms and Computation. WALCOM 2009. Lecture Notes in Computer Science, vol 5431. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00202-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00202-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00201-4

  • Online ISBN: 978-3-642-00202-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics