Abstract
We present a fully dynamic graph algorithm to recognize proper interval graphs that runs in O(logn) worst case time per edge update, where n is the number of vertices in the graph. The algorithm also maintains the connected components and supports connectivity queries in O(logn) time.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blair, J.R.S., Peyton, B.: An introduction to chordal graphs and clique trees. In: Graph Theory and Sparse Matrix Computation, vol. 56, pp. 1–29. Springer-Verlag, New York (1993)
Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Computer and System Sciences 13, 335–379 (1976)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press and McGraw-Hill Book Co., Cambridge (2001)
Corneil, D.G., Kim, H., Nataranjan, S., Olariu, S., Sprague, A.P.: Simple linear time recognition of unit interval graphs. Information Processing Letters 55, 99–104 (1995)
Corneil, D.G., Olariu, S., Stewart, L.: The ultimate interval graph recognition algorithm? In: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 175–180 (1998)
Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs. SIAM J. Computing 25(2), 390–403 (1996)
Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. In: Atallah, M.J. (ed.) Algorithms and Theory of Computation Handbook, ch. 8. CRC Press, Boca Raton (1998)
Feigenbaum, J., Kannan, S.: Dynamic graph algorithms. In: Rosen (ed.) Handbook of Discrete and Combinatorial Mathematics, ch. 17. CRC Press, Boca Raton (1999)
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. In: Annals of Discrete Mathematics, vol. 57. Elsevier B.V., Amsterdam (2004)
Hell, P., Shamir, R., Sharan, R.: A fully dynamic algorithm for recognizing and representing proper interval graphs. SIAM J. Computing 31, 289–305 (2001)
Hsu, W.L.: On-line recognition of interval graphs. In: Deza, M., Manoussakis, I., Euler, R. (eds.) CCS 1995. LNCS, vol. 1120, pp. 27–38. Springer, Heidelberg (1996)
Hsu, W.L., Ma, T.H.: Fast and simple algorithms for recognizing chordal comparability graphs and interval graphs. SIAM J. Computing 28(3), 1004–1020 (1999)
Ibarra, L.: The clique-separator graph for chordal graphs (submitted, 2006), http://facweb.cs.depaul.edu/ibarra/research.htm
Ibarra, L.: A fully dynamic graph algorithm for recognizing interval graphs (submitted, 2007), http://facweb.cs.depaul.edu/ibarra/research.htm
Ibarra, L.: Fully dynamic algorithms for chordal graphs and split graphs. ACM Transactions on Algorithms 4(4), 1–20 (2008), http://facweb.cs.depaul.edu/ibarra/research.htm
Ibarra, L.: A simple algorithm to find Hamiltonian cycles in proper interval graphs (submitted, 2008), http://facweb.cs.depaul.edu/ibarra/research.htm
Ibarra, L.: A simple fully dynamic graph algorithm for recognizing proper interval graphs (submitted, 2008), http://facweb.cs.depaul.edu/ibarra/research.htm
Johnson, D.S.: The NP-completeness column: an ongoing guide. J. Algorithms 6, 434–451 (1985)
Korte, N., Möhring, R.H.: An incremental linear-time algorithm for recognizing interval graphs. SIAM J. Computing 18(1), 68–81 (1989)
McKee, T.A., McMorris, F.R.: Topics in Intersection Graph Theory, Philadelphia. Society for Industrial and Applied Mathematics (1999) (Monograph)
Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Computing 5(2), 266–283 (1976)
Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Computing 13(3), 566–579 (1984)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ibarra, L. (2009). A Fully Dynamic Graph Algorithm for Recognizing Proper Interval Graphs. In: Das, S., Uehara, R. (eds) WALCOM: Algorithms and Computation. WALCOM 2009. Lecture Notes in Computer Science, vol 5431. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00202-1_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-00202-1_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00201-4
Online ISBN: 978-3-642-00202-1
eBook Packages: Computer ScienceComputer Science (R0)