Skip to main content

Minimum Cuts of Simple Graphs in Almost Always Linear Time

  • Conference paper
WALCOM: Algorithms and Computation (WALCOM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5431))

Included in the following conference series:

  • 906 Accesses

Abstract

In this paper we prove, that the minimum cut algorithm presented previously by the author (Brinkmeier 07), requires only linear time with high probability, if the input graph if chosen randomly from the graphs with constant expected degree. In fact a more general lower bound for the probability of a low runtime depending on several parameters is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bauer, S.: RNA Sekundärstrukturvorhersage. Studienarbeit, TU Ilmenau (April 2004)

    Google Scholar 

  2. Brinkmeier, M.: A simple and fast min-cut algorithm. Theory of Computing Systems 41, 369–380 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chekuri, C., Goldberg, A.V., Karger, D.R., Levine, M.S., Stein, C.: Experimental study of minimum cut algorithms. In: Symposium on Discrete Algorithms, pp. 324–333 (1997)

    Google Scholar 

  4. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8, 399–404 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gabow, H.N.: A matroid approach to finding edge connectivity and packing arborescences. J. Comput. Syst. Sci. 50(2), 259–273 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum flow problem. J. Assoc. Comput. Mach. 35, 921–940 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gomory, R.E., Hu, T.C.: Multi-terminal network flows. J. SIAM 9, 551–570 (1961)

    MathSciNet  MATH  Google Scholar 

  8. Karger, D.R.: Minimum cuts in near-linear time. In: STOC, pp. 56–63 (1996)

    Google Scholar 

  9. Karger, D.R.: Minimum cuts in near-linear time. CoRR, cs.DS/9812007 (1998)

    Google Scholar 

  10. Karger, D.R., Stein, C.: A new approach to the minimum cut problem. J. ACM 43(4), 601–640 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Matula, D.W.: A linear time 2+epsilon approximation algorithm for edge connectivity. In: SODA, pp. 500–504 (1993)

    Google Scholar 

  12. Nagamochi, H., Ishii, Ibaraki, T.: A simple proof of a minimum cut algorithm and its applications. TIEICE: IEICE Transactions on Communications/Electronics/Information and Systems (1999)

    Google Scholar 

  13. Nagamochi, H., Ibaraki, T.: Computing edge-connectivity in multigraphs and capacitated graphs. SIAM J. Disc. Math. 5(1), 54–66 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Nagamochi, H., Ibaraki, T.: A linear-time algorithm for finding a sparse k-connected spanning subgraph of a k-connected graph. Algorithmica 7(5&6), 583–596 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nagamochi, H., Ibaraki, T.: Graph connectivity and its augmentation: applications of MA orderings. Discrete Applied Mathematics 123(1-3), 447–472 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nagamochi, H., Nishimura, K., Ibaraki, T.: Computing all small cuts in undirected networks. In: Du, D.-Z., Zhang, X.-S. (eds.) ISAAC 1994. LNCS, vol. 834, pp. 190–198. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  17. Nagamochi, H., Ono, T., Ibaraki, T.: Implementing an efficient minimum capacity cut algorithm. Math. Program. 67, 325–341 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Padberg, M., Rinaldi, G.: An efficient algorithm for the minimum capacity cut problem. Math. Program. 47, 19–36 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stoer, M., Wagner, F.: A simple min-cut algorithm. Journal of the ACM 44(4), 585–591 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brinkmeier, M. (2009). Minimum Cuts of Simple Graphs in Almost Always Linear Time. In: Das, S., Uehara, R. (eds) WALCOM: Algorithms and Computation. WALCOM 2009. Lecture Notes in Computer Science, vol 5431. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00202-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00202-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00201-4

  • Online ISBN: 978-3-642-00202-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics