Abstract
Given an embedded planar acyclic digraph G, we define the problem of acyclic hamiltonian path completion with crossing minimization (Acyclic-HPCCM) to be the problem of determining a hamiltonian path completion set of edges such that, when these edges are embedded on G, they create the smallest possible number of edge crossings and turn G to an acyclic hamiltonian digraph. Our results include:
-
1
We provide a characterization under which a triangulated st-digraph G is hamiltonian.
-
1
For the class of planar st-digraphs, we establish an equivalence between the Acyclic-HPCCM problem and the problem of determining an upward 2-page topological book embedding with minimum number of spine crossings. Based on this equivalence we infer for the class of outerplanar triangulated st-digraphs an upward topological 2-page book embedding with minimum number of spine crossings and at most one spine crossing per edge.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alzohairi, M., Rival, I.: Series-parallel planar ordered sets have pagenumber two. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 11–24. Springer, Heidelberg (1997)
Brightwell, G., Winkler, P.: Counting linear extensions. Order 8, 225–242 (1991)
Chein, M., Habib, M.: Jump number of dags having dilworth number 2. Discrete Applied Math. 7, 243–250 (1984)
Cogis, O., Habib, M.: Nombre de sauts et graphes series-paralleles. In: RAIRO Inf. Th., vol. 13, pp. 3–18 (1979)
Colbourn, C.J., Pulleyblank, W.R.: Minimizing setups in ordered sets of fixed width. Order 1, 225–229 (1985)
Duffus, D., Rival, I., Winkler, P.: Minimizing setups for cycle-free orders sets. Proc. of the American Math. Soc. 85, 509–513 (1982)
Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theor. Comput. Sci. 61(2-3), 175–198 (1988)
Di Giacomo, E., Didimo, W., Liotta, G., Wismath, S.K.: Curve-constrained drawings of planar graphs. Comput. Geom. Theory Appl. 30(1), 1–23 (2005)
Diestel, R.: Graph Theory, 3rd edn. Springer, Heidelberg (2005)
Enomoto, H., Miyauchi, M.S., Ota, K.: Lower bounds for the number of edge-crossings over the spine in a topological book embedding of a graph. Discrete Appl. Math. 92(2-3), 149–155 (1999)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)
Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified np-complete problems. In: STOC 1974: Proceedings of the sixth annual ACM symposium on Theory of computing, pp. 47–63. ACM, New York (1974)
Giordano, F., Liotta, G., Mchedlidze, T., Symvonis, A.: Computing upward topological book embeddings of upward planar digraphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 172–183. Springer, Heidelberg (2007)
Harary, F.: Graph Theory. Addison-Wesley, Reading (1972)
Heath, L.S., Pemmaraju, S.V.: Stack and queue layouts of posets. SIAM J. Discrete Math. 10(4), 599–625 (1997)
Heath, L.S., Pemmaraju, S.V.: Stack and queue layouts of directed acyclic graphs: Part II. SIAM J. Comput. 28(5), 1588–1626 (1999)
Heath, L.S., Pemmaraju, S.V., Trenk, A.N.: Stack and queue layouts of directed acyclic graphs: Part I. SIAM J. Comput. 28(4), 1510–1539 (1999)
Karejan, Z.A., Mosesjan, K.M.: The hamiltonian completion number of a digraph (in Russian). Akad. Nauk Armyan. SSR Dokl. 70(2-3), 129–132 (1980)
Kelly, D.: Fundamentals of planar ordered sets. Discrete Math. 63(2-3), 197–216 (1987)
Mitas, J.: Tackling the jump number of interval orders. Order 8, 115–132 (1991)
Mchedlidze, T., Symvonis, A.: Optimal acyclic hamiltonian path completion for outerplanar triangulated st-digraphs (with application to upward topological book embeddings), arXiv:0807.2330, http://arxiv.org/abs/0807.2330
Nowakowski, R., Parker, A.: Ordered sets, pagenumbers and planarity. Order 6(3), 209–218 (1989)
Ono, A., Nakano, S.: Constant Time Generation of Linear Extensions. In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 445–453. Springer, Heidelberg (2005)
Pruesse, G., Ruskey, F.: Generating linear extensions fast. SIAM Journal on Computing 23(2), 373–386 (1994)
Pulleyblank, W.R.: On minimizing setups in precedence constrained scheduling. Report 81105-OR (1981)
Rival, I.: Optimal linear extensions by interchanging chains. vol. 89, pp. 387–394 (Novomber 1983)
Sharary, A., Zaguia, N.: On minimizing jumps for ordered sets. Order 7, 353–359 (1991)
Steiner, G., Stewart, L.K.: A linear algorithm to find the jump number of 2-dimensional bipartite partial orders. Order 3, 359–367 (1987)
Tamassia, R., Preparata, F.P.: Dynamic maintenance of planar digraphs, with applications. Algorithmica 5(4), 509–527 (1990)
Tamassia, R., Tollis, I.G.: A unified approach a visibility representation of planar graphs. Discrete & Computational Geometry 1, 321–341 (1986)
Wigderson, A.: The complexity of the hamiltonian circuit problem for maximal planar graphs. Technical Report TR-298, Princeton University, EECS Department (1982)
Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci. 38(1), 36–67 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mchedlidze, T., Symvonis, A. (2009). Crossing-Optimal Acyclic Hamiltonian Path Completion and Its Application to Upward Topological Book Embeddings. In: Das, S., Uehara, R. (eds) WALCOM: Algorithms and Computation. WALCOM 2009. Lecture Notes in Computer Science, vol 5431. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00202-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-00202-1_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00201-4
Online ISBN: 978-3-642-00202-1
eBook Packages: Computer ScienceComputer Science (R0)