Skip to main content

Core and Conditional Core Path of Specified Length in Special Classes of Graphs

  • Conference paper
WALCOM: Algorithms and Computation (WALCOM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5431))

Included in the following conference series:

  • 895 Accesses

Abstract

A core path of a graph is a path P in G that minimizes d(P) = \({\underset{v \in V}{\sum}} d(v,P)w(v)\). In this paper, we study the location of core path of specified length in special classes of graphs. Further, we extend our study to the problem of locating a core path of specified length under the condition that some existing facilities are already located (known as conditional core path of a graph). We study both the problems stated above in vertex weighted bipartite permutation graphs, threshold graphs and proper interval graphs and give polynomial time algorithms for the core path and conditional core path problem in these classes. We also establish the NP-Completeness of the above problems in the same classes of graphs when arbitrary positive weights are assigned to edges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alstrup, S., Lauridsen, P.W., Sommerlund, P., Thorup, M.: Finding cores of limited length. In: Rau-Chaplin, A., Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 1997. LNCS, vol. 1272, pp. 45–54. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  2. Becker, R., Lari, I., Scozzari, A., Storchi, G.: The location of median paths on grid graphs. Annals of Operations Research 150(1), 65–78 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Becker, R.I., Chang, Y.I., Lari, I., Scozzari, A., Storchi, G.: Finding the l-core of a tree. Discrete Appl. Math. 118(1-2), 25–42 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, L.: Solving the shortest-paths problem on bipartite permutation graphs efficiently. Inf. Process. Lett. 55(5), 259–264 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hakimi, S.L., Schmeichel, E.F., Labb’e, M.: On locating path- or tree-shaped facilities on networks. networks 23(6), 543–555 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brandstadt, A., Spinrad, J., Stewart, L.: Bipartite Permutation Graphs. Discrete Applied Mathematics 18, 279–292 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Minieka, E.: The optimal location of a path or a tree in a tree network. Networks 15, 309–321 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Minieka, E., Patel, N.H.: On finding the core of a tree with a specified length. J. Algorithms 4(4), 345–352 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Morgan, C.A., Slater, P.J.: A linear algorithm for a core of a tree. J. Algorithms 1(3), 247–258 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Peng, S., Lo, W.-T.: Efficient algorithms for finding a core of a tree with a specified length. J. Algorithms 20(3), 445–458 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tamir, A., Puerto, J., Mesa, J.A., Rodríguez-Chía, A.M.: Conditional location of path and tree shaped facilities on trees. J. Algorithms 56(1), 50–75 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Uehara, R., Uno, Y.: On computing longest paths in small graph classes. Int. J. Found. Comput. Sci. 18(5), 911–930 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, B.-F., Ku, S.-C., Hsieh, Y.-H.: The conditional location of a median path. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 494–503. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Balasubramanian, S., Harini, S., Rangan, C.P. (2009). Core and Conditional Core Path of Specified Length in Special Classes of Graphs. In: Das, S., Uehara, R. (eds) WALCOM: Algorithms and Computation. WALCOM 2009. Lecture Notes in Computer Science, vol 5431. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00202-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00202-1_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00201-4

  • Online ISBN: 978-3-642-00202-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics