Abstract
The contribution of this paper is twofold. It presents a new approach to the matched drawability problem of pairs of planar graphs and provides three algorithms based on this approach for drawing the pairs outerplane-outerpillar, outerplane-wheel and wheel-wheel. Further, it initiates the study of the matched drawability of triples of planar graphs: It presents an algorithm to compute a matched drawing of a triple of cycles and an algorithm to compute a matched drawing of a caterpillar and two universal level planar graphs. The results extend previous work on the subject and relate to existing literature about simultaneous embeddability and universal level planarity.
Research partially supported by the MIUR Project “MAINSTREAM: Algorithms for massive information structures and data streams” and by NSERC.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D.P., Kobourov, S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. Comput. Geom. Theory Appl. 36(2), 117–130 (2007)
Collins, C., Carpendale, S.: Vislink: Revealing relationships amongst visualizations. IEEE Trans. on Visualization and Comput. Graph. 13(6), 1192–1199 (2007)
Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River (1999)
Di Giacomo, E., Didimo, W., van Kreveld, M., Liotta, G., Speckmann, B.: Matched drawings of planar graphs. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 183–194. Springer, Heidelberg (2008)
Fowler, J.J., Kobourov, S.G.: Characterization of unlabeled level planar trees. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 367–379. Springer, Heidelberg (2007)
Fowler, J.J., Kobourov, S.G.: Characterization of unlabeled level planar graphs. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 37–49. Springer, Heidelberg (2008)
Frati, F., Kaufmann, M., Kobourov, S.G.: Constrained simultaneous and near-simultaneous embeddings. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 268–279. Springer, Heidelberg (2008)
Geyer, M., Kaufmann, M., Vrt’o, I.: Two trees which are self-intersecting when drawn simultaneously. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 201–210. Springer, Heidelberg (2006)
Grilli, L., Hong, S.H., Liotta, G., Meijer, H., Wismath, S.K.: Matched drawability of graph pairs and of graph triples. Tech. Rep. RT-004-08, Dip. Ing. Elettr. e dell’Informaz., Univ. Perugia (2008)
Kaufmann, M., Wagner, D. (eds.): Drawing graphs: methods and models. Springer, Heidelberg (2001)
Nishizeki, T., Rahman, M.S.: Planar Graph Drawing. World Scientific, Singapore (2004)
Sugiyama, K.: Graph Drawing and Applications for Software and Knowledge Engineers. World Scientific, Singapore (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Grilli, L., Hong, SH., Liotta, G., Meijer, H., Wismath, S.K. (2009). Matched Drawability of Graph Pairs and of Graph Triples. In: Das, S., Uehara, R. (eds) WALCOM: Algorithms and Computation. WALCOM 2009. Lecture Notes in Computer Science, vol 5431. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00202-1_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-00202-1_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00201-4
Online ISBN: 978-3-642-00202-1
eBook Packages: Computer ScienceComputer Science (R0)