Abstract
Computing all-pairs distances in a graph is a fundamental problem of computer science but there has been a status quo with respect to the general problem of weighted directed graphs. In contrast, there has been a growing interest in the area of algorithms for approximate shortest paths leading to many interesting variations of the original problem.
In this article, we trace some of the fundamental developments like spanners and distance oracles, their underlying constructions, as well as their applications to the approximate all-pairs shortest paths.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Awerbuch, B., Baratz, A., Peleg, D.: Efficient broadcast and light weight spanners. Tech. Report CS92-22, Weizmann Institute of Science (1992)
Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths(without matrix multiplication). SIAM Journal on Computing 28, 1167–1181 (1999)
Althöfer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete and Computational Geometry 9, 81–100 (1993)
Awerbuch, B.: Complexity of network synchronization. Journal of Association of Computing Machinery 32(4), 804–823 (1985)
Bollobás, B., Coppersmith, D., Elkin, M.: Sparse distance preserves and additive spanners. In: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 414–423 (2003)
Baswana, S., Goyal, V., Sen, S.: All-pairs nearly 2-approximate shortest paths in O(n 2polylog n) time. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 666–679. Springer, Heidelberg (2005)
Baswana, S., Gaur, A., Sen, S., Upadhyaya, J.: Distance Oracle for unweighted graphs: breaking the quadratic barrier with constant additive error. In: Proceedings of the ICALP (1) pp. 609–621 (2008)
Baswana, S., Kavitha, T.: Faster Algorithms for Approximate Distance Oracles and All-Pairs Small Stretch Paths. In: Proc. 47th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 591–602. IEEE, Los Alamitos (2006)
Baswana, S., Telikepalli, K., Mehlhorn, K., Pettie, S.: New construction of (α,β)-spanners and purely additive spanners. In: Proceedings of 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 672–681 (2005)
Baswana, S., Sen, S.: A simple linear time algorithm for computing a (2k − 1)-spanner of O(kn 1 + 1/k) size in weighted graphs. In: Proceedings of the 30th International Colloquium on Automata, Languages and Programming (ICALP), pp. 384–396 (2003)
Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in \(\tilde{O}(n^2)\) time. In: Proceedings of the 15th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 271–280 (2004)
Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in expected O(n 2) time. ACM Transactions on Algorithms 2, 557–577 (2006)
Baswana, S., Sen, S.: A simple and linear time randomized algorithm for computing sparse spanners in weighted graphs. Random Structures and Algorithms 30, 532–563 (2007)
Chan, T.M.: More algorithms for all-pairs shortest paths in weighted graphs. In: Proceedings of 39th Annual ACM Symposium on Theory of Computing, pp. 590–598 (2007)
Cohen, E.: Fast algorithms for constructing t-spanners and paths with stretch t. SIAM Journal on Computing 28, 210–236 (1998)
Cohen, E., Zwick, U.: All-pairs small stretch paths. Journal of Algorithms 38, 335–353 (2001)
Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation 9, 251–280 (1990)
Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorothms. MIT Press, Cambridge (1990)
Dor, D., Halperin, S., Zwick, U.: All pairs almost shortest paths. Siam Journal on Computing 29, 1740–1759 (2000)
Elkin, M.: Computing almost shortest paths. ACM Transactions on Algorithms (TALG) 1, 282–323 (2005)
Elkin, M., Peleg, D.: Strong inapproximability of the basic k-spanner problem. In: Proc. of 27th International Colloquium on Automata, Languages and Programming, pp. 636–648 (2000)
Elkin, M., Peleg, D.: (1 + ε,β)-spanner construction for general graphs. SIAM Journal of Computing 33, 608–631 (2004)
Erdős, P.: Extremal problems in graph theory. In: Theory of Graphs and its Applications (Proc. Sympos. Smolenice,1963), pp. 29–36. Publ. House Czechoslovak Acad. Sci., Prague (1964)
Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with O(1) worst case time. Journal of Association of Computing Machinery 31, 538–544 (1984)
Pettie, S.: A new approach to all-pairs shortest paths on real-weighted graphs. Theoretical Computer Science 312, 47–74 (2004)
Peleg, D., Schaffer, A.A.: Graph spanners. Journal of Graph Theory 13, 99–116 (1989)
Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate distance oracles and spanners. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 261–272. Springer, Heidelberg (2005)
Shoshan, A., Zwick, U.: All pairs shortest paths in undirected graphs with integer weights. In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS), pp. 605–615 (1999)
Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of 13th ACM Symposium on Parallel Algorithms and Architecture, pp. 1–10 (2001)
Thorup, M., Zwick, U.: Approximate distance oracles. Journal of Association of Computing Machinery 52, 1–24 (2005)
Thorup, M., Zwick, U.: Spanners and emulators with sublinear distance errors. In: Proceedings of 17th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 802–809 (2006)
Zwick, U.: Exact and approximate distances in graphs - A survey. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 33–48. Springer, Heidelberg (2001)
Zwick, U.: All-pairs shortest paths using bridging sets and rectangular matrix multiplication. Journal of Association of Computing Machinery 49, 289–317 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sen, S. (2009). Approximating Shortest Paths in Graphs. In: Das, S., Uehara, R. (eds) WALCOM: Algorithms and Computation. WALCOM 2009. Lecture Notes in Computer Science, vol 5431. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00202-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-00202-1_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00201-4
Online ISBN: 978-3-642-00202-1
eBook Packages: Computer ScienceComputer Science (R0)