Skip to main content

The Evolutionary Transition Algorithm: Evolving Complex Solutions Out of Simpler Ones

  • Chapter
Nature-Inspired Algorithms for Optimisation

Part of the book series: Studies in Computational Intelligence ((SCI,volume 193))

  • 2491 Accesses

Abstract

Capturing the metaphor of evolutionary transitions in biological complexity, the Evolutionary Transition Algorithm (ETA) evolves solutions of increasing structural and functional complexity from the symbiotic interaction of partial ones. In this chapter we show that the ETA indeed captures this idea and we illustrate this on instances of the Binary Constraint Satisfaction problem. The results make the ETA a promising optimization approach that requires more extensive investigation from both a theoretical and optimization perspective. We analyze here, in depth, some of the design choices that are made for the algorithm. The analysis of these choices provides insight on the plasticity of the algorithm toward alternative choices and other kinds of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Defaweux, A., Lenaerts, T.: Evolutionary transitions in sequence complexity; a proof of concept. In: Proceedings of the Annual Machine Learning Conference of Belgium and The Nederlands, Brussels, Belgium, pp. 38–45 (2004)

    Google Scholar 

  2. Defaweux, A., Lenaerts, T., van Hemert, J.: Evolutionary transitions as a metaphor for evolutionary optimisation. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS, vol. 3630, pp. 342–352. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Defaweux, A., Lenaerts, T., van Hemert, J., Parent, J.: Complexity transitions in evolutionary algorithms: Evaluating the impact of the initial population. In: Proceedings of the IEEE Congress on Evolutionary Computation, Edinburgh, UK, pp. 2174–2181 (2005)

    Google Scholar 

  4. Defaweux, A., Lenaerts, T., van Hemert, J., Parent, J.: Transition models as an incremental approach for problem solving in evolutionary algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference, Washington DC, USA, pp. 599–607 (2005)

    Google Scholar 

  5. Goldberg, D.E., Deb, K., Clark, J.H.: Genetic algorithms, noise, and the sizing of populations. Complex Systems 6, 333–362 (1992)

    MATH  Google Scholar 

  6. Goldberg, D.E., Korb, B., Deb, K.: Messy genetic algorithms: motivation, analysis, and first results. Complex Systems 3, 493–530 (1989)

    MATH  MathSciNet  Google Scholar 

  7. Goldberg, D.E., Korb, B., Deb, K.: Messy genetic algorithms revisited: Studies in mixed size and scale. Complex Systems 4, 415–444 (1990)

    MATH  Google Scholar 

  8. Golomb, S., Baumert, L.: Backtrack programming. Journal of the ACM 12, 516–524 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  9. Greffenstette, J.: Credit assignment in rule discovery systems based on genetic algorithms. Machine Learning 3, 225–245 (1988)

    Google Scholar 

  10. Holmes, J., Lanzi, P.L., Stolzmann, W., Wilson, S.W.: Learning classifier systems: New models, successful applications. Information Processing Letters 82, 23–30 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Morgan-Kaufmann/ Elsevier (2005)

    Google Scholar 

  12. Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.): IWLCS 1999. LNCS, vol. 1813, p. 243. Springer, Heidelberg (2000)

    Google Scholar 

  13. Lenaerts, T.: Different Levels of Selection in Artificial Evolutionary Systems: Analysis and Simulation of Selection Dynamics. PhD thesis, Department of Computer Science, Vrije Universiteit Brussel, Belgium (2003)

    Google Scholar 

  14. Maynard Smith, J., Szathmáry, E.: The Major Transitions in Evolution. W.H. Freeman, San Francisco (1995)

    Google Scholar 

  15. Michod, R.: Darwinian Dynamics: Evolutionary transitions in Fitness and Individuality. Princeton University Press, Princeton (1999)

    Google Scholar 

  16. Potter, M.: The Design and Analysis of a Computational Model of Cooperative Coevolution. PhD thesis, Department of Computer Science, George Mason University, USA (1997)

    Google Scholar 

  17. Raynal, F., Collet, P., Lutton, E., Schoenauer, M.: Individual gp: an alternative viewpoint for the resolution of complex problems. In: Banzhaf, W., et al. (eds.) Proceeding of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, pp. 974–981 (1999)

    Google Scholar 

  18. Raynal, F., Collet, P., Lutton, E., Schoenauer, M.: Polar ifs + parisian genetic programming = efficient ifs inverse problem solving. Genetic Programming and Evolvable Machines Journal 1(4), 339–361 (2000)

    Article  MATH  Google Scholar 

  19. Rossi, F., Dhar, V.: On the equivalence of constraint satisfaction problems. In: Aiello, L.C. (ed.) Proceedings of the 9th European Conference on Artificial Intelligence, Stockholm, Sweden, pp. 550–556 (1990)

    Google Scholar 

  20. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

  21. Salido, M.A., Garrido, A., Barták, R.: Introduction: special issue on constraint satisfaction techniques for planning and scheduling problems. Engineering Applications of Artificial Intelligence 21(5), 679–682 (2008)

    Article  Google Scholar 

  22. Simon, H.A.: The Sciences of the Artificial, 3rd edn. MIT Press, Cambridge (1969)

    Google Scholar 

  23. Thierens, D., de Jong, E.D., Watson, R.A.: On the complexity of hierarchical problem solving. In: Proceedings of The Genetic and Evolutionary Computation Conference, Washington DC, USA, pp. 1201–1208 (2005)

    Google Scholar 

  24. Tsang, E.P.K.: Foundations of Constraint Satisfaction. Academic Press, London (1993)

    Google Scholar 

  25. van Hemert, J.: Application of Evolutionary Computation to Constraints Satisfaction and Data Mining. PhD thesis, Universiteit Leiden, Netherlands (2002)

    Google Scholar 

  26. van Hemert, J.: RandomCSP Freely (2002), http://freshmeat.net/projects/randomcsp/

  27. Watson, R.: Compositional Evolution: Interdisciplinary Investigations in Evolvability, Modularity, and Symbiosis. PhD thesis, Brandeis University, USA (2002)

    Google Scholar 

  28. Watson, R.A., Pollack, J.B.: Symbiotic combination as an alternative to sexual recombination in genetic algorithms. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 425–434. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  29. Watson, R.A., Pollack, J.B.: A computational model of symbiotic composition in evolutionary transitions. Special Issue on Evolvability Biosystems 69(2-3), 187–209 (2002)

    Google Scholar 

  30. Wiegand, P.: An Analysis of Cooperative Coevolutionary Algorithms. PhD thesis, George Mason University, USA (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lenaerts, T., Defaweux, A., van Hemert, J. (2009). The Evolutionary Transition Algorithm: Evolving Complex Solutions Out of Simpler Ones. In: Chiong, R. (eds) Nature-Inspired Algorithms for Optimisation. Studies in Computational Intelligence, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00267-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00267-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00266-3

  • Online ISBN: 978-3-642-00267-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics