Abstract
Motion planning under uncertainty is an important problem in robotics. Although probabilistic sampling is highly successful for motion planning of robots with many degrees of freedom, sampling-based algorithms typically ignore uncertainty during planning. We introduce the notion of a bounded uncertainty roadmap (BURM) and use it to extend sampling-based algorithms for planning under uncertainty in environment maps. The key idea of our approach is to evaluate uncertainty, represented by collision probability bounds, at multiple resolutions in different regions of the configuration space, depending on their relevance for finding a best path. Preliminary experimental results show that our approach is highly effective: our BURM algorithm is at least 40 times faster than an algorithm that tries to evaluate collision probabilities exactly, and it is not much slower than classic probabilistic roadmap planning algorithms, which ignore uncertainty in environment maps.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alterovitz, R., Siméon, T.T., Goldberg, K.: The stochastic motion roadmap: A sampling framework for planning with Markov motion uncertainty. In: Proc. Robotics: Science and Systems (2007)
Bohlin, R., Kavraki, L.E.: Path planning using lazy PRM. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 521–528 (2000)
Boor, V., Overmars, M.H., van der Stappen, F.: The Gaussian sampling strategy for probabilistic roadmap planners. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 1018–1023 (1999)
Burns, B., Brock, O.: Sampling-based motion planning with sensing uncertainty. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 3313–3318 (2007)
Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations, ch. 7. The MIT Press, Cambridge (2005)
de Berg, M., van Kreveld, M., Overmars, M.H., Schwarzkopf, O.: Computaional Geometry: Algorithms and Applications. Springer, Heidelberg (2000)
Hsu, D., Jiang, T., Reif, J., Sun, Z.: The bridge test for sampling narrow passages with probabilistic roadmap planners. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 4420–4426 (2003)
Hsu, D., Latombe, J.C., Kurniawati, H.: On the probabilistic foundations of probabilistic roadmap planning. Int. J. Robotics Research 25(7), 627–643 (2006)
Hsu, D., Latombe, J.C., Motwani, R.: Path planning in expansive configuration spaces. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 2719–2726 (1997)
Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artificial Intelligence 101(1-2), 99–134 (1998)
Kalos, M.H., Whitlock, P.A.: Monte Carlo Methods, vol. 1. John Wiley & Sons, New York (1986)
Kurniawati, H., Hsu, D., Lee, W.S.: SARSOP: Efficient point-based POMDP planning by approximating optimally reachable belief spaces. In: Proc. Robotics: Science and Systems (2008)
Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Boston (1991)
LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)
LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 473–479 (1999)
Lin, M., Manocha, D.: Collision and proximity queries. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, ch. 35. CRC Press, Boca Raton (2004)
Missiuro, P., Roy, N.: Adapting probabilistic roadmaps to handle uncertain maps. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 1261–1267 (2006)
Papadimitriou, C., Tsisiklis, J.N.: The complexity of Markov decision processes. Mathematics of Operations Research 12(3), 441–450 (1987)
Pineau, J., Gordon, G., Thrun, S.: Point-based value iteration: An anytime algorithm for POMDPs. In: Proc. Int. Jnt. Conf. on Artificial Intelligence, pp. 477–484 (2003)
Smallwood, R.D., Sondik, E.J.: The optimal control of partially observable Markov processes over a finite horizon. Operations Research 21, 1071–1088 (1973)
Smith, T., Simmons, R.: Point-based POMDP algorithms: Improved analysis and implementation. In: Proc. Uncertainty in Artificial Intelligence (2005)
Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)
Yu, Y., Gupta, K.: Sensor-based roadmaps for motion planning for articulated robots in unknown environments: Some experiments with an eye-in-hand system. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, pp. 1070–1714 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Guibas, L.J., Hsu, D., Kurniawati, H., Rehman, E. (2009). Bounded Uncertainty Roadmaps for Path Planning. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds) Algorithmic Foundation of Robotics VIII. Springer Tracts in Advanced Robotics, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00312-7_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-00312-7_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00311-0
Online ISBN: 978-3-642-00312-7
eBook Packages: EngineeringEngineering (R0)