Skip to main content

Bounded Uncertainty Roadmaps for Path Planning

  • Chapter
Algorithmic Foundation of Robotics VIII

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 57))

Abstract

Motion planning under uncertainty is an important problem in robotics. Although probabilistic sampling is highly successful for motion planning of robots with many degrees of freedom, sampling-based algorithms typically ignore uncertainty during planning. We introduce the notion of a bounded uncertainty roadmap (BURM) and use it to extend sampling-based algorithms for planning under uncertainty in environment maps. The key idea of our approach is to evaluate uncertainty, represented by collision probability bounds, at multiple resolutions in different regions of the configuration space, depending on their relevance for finding a best path. Preliminary experimental results show that our approach is highly effective: our BURM algorithm is at least 40 times faster than an algorithm that tries to evaluate collision probabilities exactly, and it is not much slower than classic probabilistic roadmap planning algorithms, which ignore uncertainty in environment maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alterovitz, R., Siméon, T.T., Goldberg, K.: The stochastic motion roadmap: A sampling framework for planning with Markov motion uncertainty. In: Proc. Robotics: Science and Systems (2007)

    Google Scholar 

  2. Bohlin, R., Kavraki, L.E.: Path planning using lazy PRM. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 521–528 (2000)

    Google Scholar 

  3. Boor, V., Overmars, M.H., van der Stappen, F.: The Gaussian sampling strategy for probabilistic roadmap planners. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 1018–1023 (1999)

    Google Scholar 

  4. Burns, B., Brock, O.: Sampling-based motion planning with sensing uncertainty. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 3313–3318 (2007)

    Google Scholar 

  5. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations, ch. 7. The MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  6. de Berg, M., van Kreveld, M., Overmars, M.H., Schwarzkopf, O.: Computaional Geometry: Algorithms and Applications. Springer, Heidelberg (2000)

    Google Scholar 

  7. Hsu, D., Jiang, T., Reif, J., Sun, Z.: The bridge test for sampling narrow passages with probabilistic roadmap planners. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 4420–4426 (2003)

    Google Scholar 

  8. Hsu, D., Latombe, J.C., Kurniawati, H.: On the probabilistic foundations of probabilistic roadmap planning. Int. J. Robotics Research 25(7), 627–643 (2006)

    Article  Google Scholar 

  9. Hsu, D., Latombe, J.C., Motwani, R.: Path planning in expansive configuration spaces. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 2719–2726 (1997)

    Google Scholar 

  10. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artificial Intelligence 101(1-2), 99–134 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kalos, M.H., Whitlock, P.A.: Monte Carlo Methods, vol. 1. John Wiley & Sons, New York (1986)

    MATH  Google Scholar 

  12. Kurniawati, H., Hsu, D., Lee, W.S.: SARSOP: Efficient point-based POMDP planning by approximating optimally reachable belief spaces. In: Proc. Robotics: Science and Systems (2008)

    Google Scholar 

  13. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Boston (1991)

    Google Scholar 

  14. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  15. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 473–479 (1999)

    Google Scholar 

  16. Lin, M., Manocha, D.: Collision and proximity queries. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, ch. 35. CRC Press, Boca Raton (2004)

    Google Scholar 

  17. Missiuro, P., Roy, N.: Adapting probabilistic roadmaps to handle uncertain maps. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 1261–1267 (2006)

    Google Scholar 

  18. Papadimitriou, C., Tsisiklis, J.N.: The complexity of Markov decision processes. Mathematics of Operations Research 12(3), 441–450 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pineau, J., Gordon, G., Thrun, S.: Point-based value iteration: An anytime algorithm for POMDPs. In: Proc. Int. Jnt. Conf. on Artificial Intelligence, pp. 477–484 (2003)

    Google Scholar 

  20. Smallwood, R.D., Sondik, E.J.: The optimal control of partially observable Markov processes over a finite horizon. Operations Research 21, 1071–1088 (1973)

    Article  MATH  Google Scholar 

  21. Smith, T., Simmons, R.: Point-based POMDP algorithms: Improved analysis and implementation. In: Proc. Uncertainty in Artificial Intelligence (2005)

    Google Scholar 

  22. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  23. Yu, Y., Gupta, K.: Sensor-based roadmaps for motion planning for articulated robots in unknown environments: Some experiments with an eye-in-hand system. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, pp. 1070–1714 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guibas, L.J., Hsu, D., Kurniawati, H., Rehman, E. (2009). Bounded Uncertainty Roadmaps for Path Planning. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds) Algorithmic Foundation of Robotics VIII. Springer Tracts in Advanced Robotics, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00312-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00312-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00311-0

  • Online ISBN: 978-3-642-00312-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics