Skip to main content

On Approximate Geodesic-Distance Queries amid Deforming Point Clouds

  • Chapter
Book cover Algorithmic Foundation of Robotics VIII

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 57))

  • 2079 Accesses

Abstract

We propose data structures for answering a geodesic-distance query between two query points in a two-dimensional or three-dimensional dynamic environment, in which obstacles are deforming continuously. Each obstacle in the environment is modeled as the convex hull of a continuously deforming point cloud. The key to our approach is to avoid maintaining the convex hull of each point cloud explicitly but still able to retain sufficient geometric information to estimate geodesic distances in the free space.

Work on this paper is supported by NSF under grants CNS-05-40347, CFF-06-35000, and DEB-04-25465, by ARO grants W911NF-04-1-0278 and W911NF-07-1-0376, by an NIH grant 1P50-GM-08183-01, by a DOE grant OEG-P200A070505, and by a grant from the U.S.–Israel Binational Science Foundation. Part of the work was done while the last author was at Duke University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Aronov, B., O’Rourke, J., Schevon, C.: Star unfolding of a polytope with applications. SIAM J. Comput. 26, 1689–1713 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Agarwal, P.K., Guibas, L., Hershberger, J., Veach, E.: Maintaining the extent of a moving point set. Discrete Comput. Geom. 26, 353–374 (2001)

    MATH  MathSciNet  Google Scholar 

  3. Agarwal, P.K., Sharathkumar, R., Yu, H.: Approximate Euclidean shortest paths amid convex obstacles. In: Proc. 20th ACM-SIAM Sympos. Discrete Algorithms (to appear)

    Google Scholar 

  4. Alexandron, G., Kaplan, H., Sharir, M.: Kinetic and dynamic data structures for convex hulls and upper envelopes. Comput. Geom. Theory Appl. 36, 144–158 (2007)

    MATH  MathSciNet  Google Scholar 

  5. Arikati, S., Chen, D., Chew, L., Das, G., Smid, M., Zaroliagis, C.: Planar spanners and approximate shortest path queries among obstacles in the plane. In: Díaz, J. (ed.) ESA 1996. LNCS, vol. 1136, pp. 514–528. Springer, Heidelberg (1996)

    Google Scholar 

  6. Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. J. Algorithms 31, 1–28 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, D.: On the all-pairs Euclidean short path problem. In: Proc. 6th Annu. ACM-SIAM Sympos. Discrete Algorithms, pp. 292–301 (1995)

    Google Scholar 

  8. Chiang, Y.-J., Mitchell, J.S.B.: Two-point Euclidean shortest path queries in the plane. In: Proc. 10th Annu. ACM-SIAM Sympos. Discrete Algorithms, pp. 215–224 (1999)

    Google Scholar 

  9. Clarkson, K.: Approximation algorithms for shortest path motion planning. In: Proc. 19th Annu. ACM Sympos. Theory Comput., pp. 56–65 (1987)

    Google Scholar 

  10. Dobkin, D.P., Kirkpatrick, D.G.: Determining the separation of preprocessed polyhedra — a unified approach. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 400–413. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  11. Har-Peled, S.: Approximate shortest-path and geodesic diameter on convex polytopes in three dimensions. Discrete Comput. Geom. 21, 217–231 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hershberger, J., Suri, S.: Practical methods for approximating shortest paths on a convex polytope in ℝ3. Comput. Geom. Theory Appl. 10, 31–46 (1998)

    MATH  MathSciNet  Google Scholar 

  13. Hershberger, J., Suri, S.: An optimal algorithm for Euclidean shortest paths in the plane. SIAM J. Comput. 28, 2215–2256 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ling, M., Manocha, D.: Collision and proximity queries. In: Goodman, J., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., pp. 787–808. CRC Press, Boca Raton (2004)

    Google Scholar 

  15. Matoušek, J., Sharir, M., Welzl, E.: A subexponential bound for linear programming. Algorithmica 16, 498–516 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Overmars, M., van Leeuwen, J.: Maintenance of configurations in the plane. J. Comput. Syst. Sci. 23, 166–204 (1981)

    Article  MATH  Google Scholar 

  17. Reif, J., Sharir, M.: Motion planning in the presence of moving obstacles. J. Assoc. Comput. Mach. 41, 764–790 (1994)

    MATH  Google Scholar 

  18. van den Berg, J.: Path Planning in Dynamic Environments. PhD thesis, Utrecht University (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Agarwal, P.K., Efrat, A., Sharathkumar, R., Yu, H. (2009). On Approximate Geodesic-Distance Queries amid Deforming Point Clouds. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds) Algorithmic Foundation of Robotics VIII. Springer Tracts in Advanced Robotics, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00312-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00312-7_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00311-0

  • Online ISBN: 978-3-642-00312-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics