Skip to main content

A State Transition Diagram for Simultaneous Collisions with Application in Billiard Shooting

  • Chapter
Algorithmic Foundation of Robotics VIII

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 57))

Abstract

This paper models a multibody collision in the impulse space as a state transition diagram, where each state represents a phase during which impacts are “active” at only a subset of the contact points. A state transition happens whenever an active impact finishes restitution, or an inactive impact gets reactivated, depending on whether the two involved bodies are instantaneously penetrating into each other or not. The elastic energy due to an impact is not only affected by the impulse at the corresponding contact point, but also by other impulses exerted on the two involved bodies during the impact. Consequently, Poisson’s impulse-based law of restitution could result in negative energy. A new law governing the loss of elastic energy during restitution is introduced. Convergence of the impulse sequence generated by the state transition diagram is established. The collision outcome depends on the ratios of the contact stiffnesses rather than on their individual values. The collision model is then applied in an analysis of billiard shooting in which the cue stick impacts the cue ball, which in turn impacts the pool table. The system is driven by the normal impulses at the two contacts with the tangential impulses determined via a contact mode analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, S., Lankarani, H.M., Pereira, M.F.O.S.: Frictional impact analysis in open-loop multibody mechanical systems. J. Applied Mechanics 121, 119–126 (1999)

    Article  Google Scholar 

  2. Anitescu, M., Porta, F.A.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. ASME J. Nonlinear Dynamics 14, 231–247 (1997)

    Article  MATH  Google Scholar 

  3. Baraff, D.: Analytical methods for dynamic simulation of non-penetrating rigid bodies. Computer Graphics 23, 223–232 (1989)

    Article  Google Scholar 

  4. Brach, R.M.: Rigid body collisions. J. Applied Mechanics 56, 133–137 (1989)

    Article  Google Scholar 

  5. Chatterjee, A., Ruina, A.: A new algebraic rigid-body collision law based on impulse space considerations. J. Applied Mechanics 65, 939–951 (1998)

    Article  Google Scholar 

  6. Han, I., Gilmore, B.J.: Impact analysis for multiple-body systems with friction and sliding contact. In: Sathyadev, D.P. (ed.) Flexible Assembly Systems, pp. 99–108. American Society Mech. Engineers Design Engr. Div. (1989)

    Google Scholar 

  7. Ho, K.H.L., Martin, T., Baldwin, J.: Snooker robot player — 20 years on. In: Proc. IEEE Symp. Comp. Intell. Games, pp. 1–8 (2007)

    Google Scholar 

  8. Ivanov, A.P.: On multiple impact. J. Applied Math. Mechanics 59, 887–902 (1995)

    Article  MATH  Google Scholar 

  9. Keller, J.B.: Impact with friction. J. Applied Mechanics 53, 1–4 (1986)

    Article  MATH  Google Scholar 

  10. Long, F., et al.: Robotic pool: an experiment in automatic potting. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 2520–2525 (2004)

    Google Scholar 

  11. Marlow, W.C.: The Physics of Pocket Billiards. Marlow Advanced Systems Technologies (1994)

    Google Scholar 

  12. Mason, M.T.: Mechanics of Robotic Manipulation. The MIT Press, Cambridge (2001)

    Google Scholar 

  13. Moore, A.W., Hill, D.J., Johnson, M.P.: An empirical investigation of brute force to choose features, smoothers and function approximators. In: Hanson, S.J., et al. (eds.) Computational Learning Theory and Natural Learning, pp. 361–379. The MIT Press, Cambridge (1995)

    Google Scholar 

  14. Cross, R.: Billiarads, http://physics.usyd.edu.au/~cross/Billiards.htm

  15. Routh, E.J.: Dynamics of a System of Rigid Bodies. MacMillan and Co., Basingstoke (1913)

    Google Scholar 

  16. Stewart, D.E., Trinkle, J.C.: An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction. Int. J. Numer. Methods Engr. 39, 2673–2691 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Stewart, D.E.: Rigid-body dynamics with friction and impact. SIAM Review 42, 3–39 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wang, Y., Mason, M.T.: Two-dimensional rigid-body collisions with friction. J. Applied Mechanics 59, 635–642 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jia, YB., Mason, M., Erdmann, M. (2009). A State Transition Diagram for Simultaneous Collisions with Application in Billiard Shooting. In: Chirikjian, G.S., Choset, H., Morales, M., Murphey, T. (eds) Algorithmic Foundation of Robotics VIII. Springer Tracts in Advanced Robotics, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00312-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00312-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00311-0

  • Online ISBN: 978-3-642-00312-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics