Skip to main content

Accuracy of High-Resolution Radar Images in the Estimation of Plot-Level Forest Variables

  • Conference paper
  • First Online:
Advances in GIScience

Abstract

In the present study, we used the airborne E-SAR radar to simulate the satellite-borne high-resolution TerraSAR radar data and determined the accuracy of the plot-level forest variable estimates produced. Estimation was carried out using the nonparametric k-nearest neighbour (k-nn) method. Variables studied included mean volume, tree species-specific volumes and their proportions of total volume, basal area, mean height and mean diameter. E-SAR-based estimates were compared with those obtained using aerial photographs and medium-resolution satellite image (Landsat ETM+) recording optical wavelength energy. The study area was located in Kirkkonummi, southern Finland. The relative RMSEs for ESAR were 45%, 29%, 28% and 38% for mean volume, mean diameter, mean height and basal area, respectively. For aerial photographs these were 51%, 26%, 27% and 42%, and for Landsat ETM+ images 58%, 40%, 35% and 49%. Combined datasets outperformed all single-source datasets, with relative RMSEs of 26%, 23%, 33% and 39%. Of the single-source datasets, the E-SAR images were well suited for estimating mean volume, while for mean diameter, mean height and basal area the E-SAR and aerial photographs performed similarly and far better than Landsat ETM+. The aerial photographs succeeded well in the estimation of species-specific volumes and their proportions, but the combined dataset was still significantly better in volume proportions. Due to its good temporal resolution, satellite-borne radar imaging is a promising data source for forest inventories, both in large-area forest inventories and operative forest management planning. Future high-resolution synthetic aperture radar (SAR) images could be combined with airborne laser scanner data when estimating forest or even tree characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Düring, R., Koudogbo, F.N. & Weber, M. (2008) TerraSAR-X and TanDEM-X Revolution in Spaceborne Radar, Proceedings of the ISPRS XXI Congress, Beijing, China.

    Google Scholar 

  • Franco-Lopez, H., Ek, A.R. & Bauer, M.E. (2001) Estimation and mapping of forest density, volume and cover type using the k-nearest neighbors method. Remote Sensing of Environment 77: 251–274.

    Google Scholar 

  • Haara, A. & Korhonen, K. (2004) Kuvioittaisen arvioinnin luotettavuus. Metsätieteen aikakauskirja, 2004, 489–508.

    Google Scholar 

  • Haralick, R. M., Shanmugan, K. & Dinstein, I. (1973) Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics, 3, 610–621.

    Article  Google Scholar 

  • Henderson, Floyd M., Lewis & Anthony, J. (editors). (1998) Principles & Applications of Imaging Radar, Manual of Remote Sensing, Third Edition, Volume 2, John Wiley & Sons, Inc., ISBN 0–471-29406–3.

    Google Scholar 

  • Holmgren, J. (2003) Estimation of forest variables using airborne laser scanning. PhD Thesis. Acta Universitatis Agriculturae Sueciae, Silvestria 278, Swedish University of Agricultural Sciences, Umeå, Sweden.

    Google Scholar 

  • Holopainen, M. & Lukkarinen, E. (1994) Digitaalisten ilmakuvien käyttö metsävarojen inventoinnissa. Helsingin yliopiston metsävarojen käytön laitoksen julkaisuja 4. (In Finnish).

    Google Scholar 

  • Holopainen, M., Haapanen, R., Tuominen, S. & Viitala, R. (2008) Performance of airborne laser scanning- and aerial photograph-based statistical and textural features in forest variable estimation. In Hill, R., Rossette, J. and Suárez, J. Silvilaser 2008 proceedings:105–112.

    Google Scholar 

  • Hyyppä, J. (1993) Development and feasibility of airborne ranging radar for forest assessment. Helsinki University of Technology, Laboratory of Space Technology, 112 pp. ISBN 951–22-1888–7.

    Google Scholar 

  • Hyyppä, J. & Inkinen, M. (1999) Detecting and estimating attributes for single trees using laser scanner. The Photogrammetric Journal of Finland, 16:27–42.

    Google Scholar 

  • Hyyppä, J., Hyyppä, H., Inkinen, M., Engdahl, M., Linko, S. & Zhu, Y-H. (2000) Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. Forest Ecology and Management, 128:109–120.

    Article  Google Scholar 

  • Hyyppä, J., Hyyppä, H., Leckie, D., Gougeon, F., Yu, X. & Maltamo, M. (2008) Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Internationa Journal of Remote Sensing 29:1339–1366.

    Article  Google Scholar 

  • Kaartinen, H, Hyyppä, J. Liang, X., Litkey, P., Kukko, A., Yu, X., Hyyppä, H. & Holopainen, M. (2008) Accuracy of automatic tree extraction using airborne laser scanner data. In Hill, R., Rossette, J. and Suárez, J. Silvilaser 2008 proceedings: 467–476.

    Google Scholar 

  • Kellndorfer, J. M., Dobson, M. C., Vona, J. D. & Clutter, M. (2003) Toward precision forestry: Plot-level parameter retrieval for slash pine plantations with JPL AIRSAR. IEEE Transactions on Geoscience and Remote Sensing 41(7): 1571–1582.

    Article  Google Scholar 

  • Kilkki, P. & Päivinen, R. (1987) Reference sample plots to combine field measurements and satellite data in forest inventory. Department of Forest Mensuration and Management, University of Helsinki. Research notes, 19:210–215.

    Google Scholar 

  • Krieger, G., Papathanassiou, K. & Cloude, S.R. (2005) Spaceborne Polarimetric SAR Interferometry: Performance Analysis and Mission Concepts, EURASIP Journal on Applied Signal Processing 2005(20):3272–3292

    Article  Google Scholar 

  • Laasasenaho, J. & Päivinen, R. (1986) Kuvioittaisen arvioinnin tarkistamisesta. Folia Forestalia 664. 19 s.

    Google Scholar 

  • Maltamo, M., Eerikäinen, K., Pitkänen, J., Hyyppä, J. & Vehmas, M. (2004) Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sensing of Environment, 90, 319–330.

    Google Scholar 

  • Næsset, E. (1997) Estimating timber volume of forest stands using airborne laser scanner data. Remote Sensing of Environment, 51, 246–253.

    Google Scholar 

  • Næsset, E. (2004a) Practical large-scale forest stand inventory using a small footprint airborne scanning laser. Scandinavian Journal of Forest Research, 19, 164–179.

    Article  Google Scholar 

  • Næsset, E. (2004b) Accuracy of forest inventory using airborne laser-scanning: Evaluating the first Nordic full-scale operational project. Scandinavian Journal of Forest Research, 19, 554–557.

    Article  Google Scholar 

  • Packalén, P. & Maltamo, M. (2006) Predicting the plot volume by tree species using airborne laser scanning and aerial photographs. Forest Science, 56, 611–622.

    Google Scholar 

  • Packalén, P. & Maltamo, M. (2007) The k-MSN method in the prediction of species specific stand attributes using airborne laser scanning and aerial photographs. Remote Sensing of Environment, 109, 328–341.

    Article  Google Scholar 

  • Poso, S. (1983) Kuvioittaisen arvioimismenetelmän perusteita. Silva Fennica 17:313–343.

    Google Scholar 

  • Poso, S., Wang, G. & Tuominen, S. (1999) Weighting alternative estimates when using multi-source auxiliary data for forest inventory. Silva Fennica 33:41–50.

    Google Scholar 

  • Pussinen, A. (1992) Ilmakuvat and Landsat TM-satelliittikuvat välialueiden kuvioittaisessa arvioinnissa. Aerial photos and Landsat TM -image in compartmentwise survey. University of Joensuu, Faculty of Forestry. Thesis for the Master of Science in Forestry Degree. 48 s.

    Google Scholar 

  • Rauste, Y. (1990) Incidence-angle dependence in forested and non-forested areas in Seasat SAR data. International Journal of Remote Sensing, 11:1267–1276.

    Article  Google Scholar 

  • Rauste, Y. (2006) Techniques for Wide-Area Mapping of Forest Biomass Using Radar Data. Dissertation for the degree of Doctor of Science in Technology. VTT Publications 591.

    Google Scholar 

  • Rauste, Y., Häme, T., Pulliainen, J., Heiska, K. & Hallikainen, M. (1994) Radar-based forest biomass estimation. International Journal of Remote Sensing, 15:2797–2808.

    Article  Google Scholar 

  • Rauste, Y., Lönnqvist, A., Molinier, M., Ahola, H. & Häme, T. (2008) ALOS Palsar Data in Boreal Forest Monitoring and Biomass Mapping, Proceedings of 1st Joint PI Symposium of ALOS Data Nodes, Kyoto, Japan, 19 - 23 Nov. 2007.

    Google Scholar 

  • Rosenqvist, A., Shimada, M., Ito, N. & Watanabe, M. (2007) ALOS PALSAR: A Pathfinder Mission for Global-Scale Monitoring of the Environment, IEEE Transactions on Geoscience and Remote Sensing 45(11), 3307–3316.

    Article  Google Scholar 

  • Saari, A. & Kangas, A. (2005) Kuvioittaisen arvioinnin harhan muodostuminen. Metsätieteen aikakauskirja 1/2005:5–18.

    Google Scholar 

  • Suvanto, A., Maltamo, M., Packalén, P. & Kangas, J. (2005) Kuviokohtaisten puustotunnusten ennustaminen laserkeilauksella. Metsätieteen aikakauskirja, 2005:413–428.

    Google Scholar 

  • Tokola, T. (1989) Satelliittikuvien käyttö koealaotantaan perustuvassa suuralueiden inventoinnissa. Joensuun yliopisto, metsätieteellinen tiedekunta. Metsätalouden suunnittelun syventävien opintojen tutkielma. 72 s.

    Google Scholar 

  • Tokola, T. & Heikkilä, J. (1995) Satelliittikuvainventoinnin puuston tilavuusestimaattien luotettavuus tilatasolla. Research meeting of Forest Research Institute, North Karelia, Finland. Metsäntutkimuslaitoksen tiedonantoja 568:23–35.

    Google Scholar 

  • Tokola, T., Pitkänen, J., Partinen, S., & Muinonen, E. (1996) Point accuracy of a nonparametric method in estimation of forest characteristics with different satellite materials. International Journal of Remote Sensing, 12:2333–2351.

    Article  Google Scholar 

  • Tomppo, E. (1990) Designing a satellite image-aided national forest inventory. Proceedings from SNS/IUFRO workshop in Umeå 26–28 Feb. 1990. Remote Sensing Laboratory, Swedish University of Agricultural Sciences, Report 4:43–47.

    Google Scholar 

  • Tomppo, E., Katila, M., Moilanen, J., Mäkelä, H. & Peräsaari, J. (1998) Kunnittaiset metsävaratiedot 1990–1994 (Forest resources per municipalities 1990–1994). Metsätieteen aikakauskirja 4B. (In Finnish).

    Google Scholar 

  • Tuominen, S. & Poso, S. (2001) Improving multi-source forest inventory by weighting auxiliary data sources. Silva Fennica 35(2):203–214.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Holopainen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holopainen, M., Tuominen, S., Karjalainen, M., Hyyppä, J., Vastaranta, M., Hyyppä, H. (2009). Accuracy of High-Resolution Radar Images in the Estimation of Plot-Level Forest Variables. In: Sester, M., Bernard, L., Paelke, V. (eds) Advances in GIScience. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00318-9_4

Download citation

Publish with us

Policies and ethics