Abstract
In the present study, we used the airborne E-SAR radar to simulate the satellite-borne high-resolution TerraSAR radar data and determined the accuracy of the plot-level forest variable estimates produced. Estimation was carried out using the nonparametric k-nearest neighbour (k-nn) method. Variables studied included mean volume, tree species-specific volumes and their proportions of total volume, basal area, mean height and mean diameter. E-SAR-based estimates were compared with those obtained using aerial photographs and medium-resolution satellite image (Landsat ETM+) recording optical wavelength energy. The study area was located in Kirkkonummi, southern Finland. The relative RMSEs for ESAR were 45%, 29%, 28% and 38% for mean volume, mean diameter, mean height and basal area, respectively. For aerial photographs these were 51%, 26%, 27% and 42%, and for Landsat ETM+ images 58%, 40%, 35% and 49%. Combined datasets outperformed all single-source datasets, with relative RMSEs of 26%, 23%, 33% and 39%. Of the single-source datasets, the E-SAR images were well suited for estimating mean volume, while for mean diameter, mean height and basal area the E-SAR and aerial photographs performed similarly and far better than Landsat ETM+. The aerial photographs succeeded well in the estimation of species-specific volumes and their proportions, but the combined dataset was still significantly better in volume proportions. Due to its good temporal resolution, satellite-borne radar imaging is a promising data source for forest inventories, both in large-area forest inventories and operative forest management planning. Future high-resolution synthetic aperture radar (SAR) images could be combined with airborne laser scanner data when estimating forest or even tree characteristics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Düring, R., Koudogbo, F.N. & Weber, M. (2008) TerraSAR-X and TanDEM-X Revolution in Spaceborne Radar, Proceedings of the ISPRS XXI Congress, Beijing, China.
Franco-Lopez, H., Ek, A.R. & Bauer, M.E. (2001) Estimation and mapping of forest density, volume and cover type using the k-nearest neighbors method. Remote Sensing of Environment 77: 251–274.
Haara, A. & Korhonen, K. (2004) Kuvioittaisen arvioinnin luotettavuus. Metsätieteen aikakauskirja, 2004, 489–508.
Haralick, R. M., Shanmugan, K. & Dinstein, I. (1973) Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics, 3, 610–621.
Henderson, Floyd M., Lewis & Anthony, J. (editors). (1998) Principles & Applications of Imaging Radar, Manual of Remote Sensing, Third Edition, Volume 2, John Wiley & Sons, Inc., ISBN 0–471-29406–3.
Holmgren, J. (2003) Estimation of forest variables using airborne laser scanning. PhD Thesis. Acta Universitatis Agriculturae Sueciae, Silvestria 278, Swedish University of Agricultural Sciences, Umeå, Sweden.
Holopainen, M. & Lukkarinen, E. (1994) Digitaalisten ilmakuvien käyttö metsävarojen inventoinnissa. Helsingin yliopiston metsävarojen käytön laitoksen julkaisuja 4. (In Finnish).
Holopainen, M., Haapanen, R., Tuominen, S. & Viitala, R. (2008) Performance of airborne laser scanning- and aerial photograph-based statistical and textural features in forest variable estimation. In Hill, R., Rossette, J. and Suárez, J. Silvilaser 2008 proceedings:105–112.
Hyyppä, J. (1993) Development and feasibility of airborne ranging radar for forest assessment. Helsinki University of Technology, Laboratory of Space Technology, 112 pp. ISBN 951–22-1888–7.
Hyyppä, J. & Inkinen, M. (1999) Detecting and estimating attributes for single trees using laser scanner. The Photogrammetric Journal of Finland, 16:27–42.
Hyyppä, J., Hyyppä, H., Inkinen, M., Engdahl, M., Linko, S. & Zhu, Y-H. (2000) Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. Forest Ecology and Management, 128:109–120.
Hyyppä, J., Hyyppä, H., Leckie, D., Gougeon, F., Yu, X. & Maltamo, M. (2008) Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Internationa Journal of Remote Sensing 29:1339–1366.
Kaartinen, H, Hyyppä, J. Liang, X., Litkey, P., Kukko, A., Yu, X., Hyyppä, H. & Holopainen, M. (2008) Accuracy of automatic tree extraction using airborne laser scanner data. In Hill, R., Rossette, J. and Suárez, J. Silvilaser 2008 proceedings: 467–476.
Kellndorfer, J. M., Dobson, M. C., Vona, J. D. & Clutter, M. (2003) Toward precision forestry: Plot-level parameter retrieval for slash pine plantations with JPL AIRSAR. IEEE Transactions on Geoscience and Remote Sensing 41(7): 1571–1582.
Kilkki, P. & Päivinen, R. (1987) Reference sample plots to combine field measurements and satellite data in forest inventory. Department of Forest Mensuration and Management, University of Helsinki. Research notes, 19:210–215.
Krieger, G., Papathanassiou, K. & Cloude, S.R. (2005) Spaceborne Polarimetric SAR Interferometry: Performance Analysis and Mission Concepts, EURASIP Journal on Applied Signal Processing 2005(20):3272–3292
Laasasenaho, J. & Päivinen, R. (1986) Kuvioittaisen arvioinnin tarkistamisesta. Folia Forestalia 664. 19 s.
Maltamo, M., Eerikäinen, K., Pitkänen, J., Hyyppä, J. & Vehmas, M. (2004) Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sensing of Environment, 90, 319–330.
Næsset, E. (1997) Estimating timber volume of forest stands using airborne laser scanner data. Remote Sensing of Environment, 51, 246–253.
Næsset, E. (2004a) Practical large-scale forest stand inventory using a small footprint airborne scanning laser. Scandinavian Journal of Forest Research, 19, 164–179.
Næsset, E. (2004b) Accuracy of forest inventory using airborne laser-scanning: Evaluating the first Nordic full-scale operational project. Scandinavian Journal of Forest Research, 19, 554–557.
Packalén, P. & Maltamo, M. (2006) Predicting the plot volume by tree species using airborne laser scanning and aerial photographs. Forest Science, 56, 611–622.
Packalén, P. & Maltamo, M. (2007) The k-MSN method in the prediction of species specific stand attributes using airborne laser scanning and aerial photographs. Remote Sensing of Environment, 109, 328–341.
Poso, S. (1983) Kuvioittaisen arvioimismenetelmän perusteita. Silva Fennica 17:313–343.
Poso, S., Wang, G. & Tuominen, S. (1999) Weighting alternative estimates when using multi-source auxiliary data for forest inventory. Silva Fennica 33:41–50.
Pussinen, A. (1992) Ilmakuvat and Landsat TM-satelliittikuvat välialueiden kuvioittaisessa arvioinnissa. Aerial photos and Landsat TM -image in compartmentwise survey. University of Joensuu, Faculty of Forestry. Thesis for the Master of Science in Forestry Degree. 48 s.
Rauste, Y. (1990) Incidence-angle dependence in forested and non-forested areas in Seasat SAR data. International Journal of Remote Sensing, 11:1267–1276.
Rauste, Y. (2006) Techniques for Wide-Area Mapping of Forest Biomass Using Radar Data. Dissertation for the degree of Doctor of Science in Technology. VTT Publications 591.
Rauste, Y., Häme, T., Pulliainen, J., Heiska, K. & Hallikainen, M. (1994) Radar-based forest biomass estimation. International Journal of Remote Sensing, 15:2797–2808.
Rauste, Y., Lönnqvist, A., Molinier, M., Ahola, H. & Häme, T. (2008) ALOS Palsar Data in Boreal Forest Monitoring and Biomass Mapping, Proceedings of 1st Joint PI Symposium of ALOS Data Nodes, Kyoto, Japan, 19 - 23 Nov. 2007.
Rosenqvist, A., Shimada, M., Ito, N. & Watanabe, M. (2007) ALOS PALSAR: A Pathfinder Mission for Global-Scale Monitoring of the Environment, IEEE Transactions on Geoscience and Remote Sensing 45(11), 3307–3316.
Saari, A. & Kangas, A. (2005) Kuvioittaisen arvioinnin harhan muodostuminen. Metsätieteen aikakauskirja 1/2005:5–18.
Suvanto, A., Maltamo, M., Packalén, P. & Kangas, J. (2005) Kuviokohtaisten puustotunnusten ennustaminen laserkeilauksella. Metsätieteen aikakauskirja, 2005:413–428.
Tokola, T. (1989) Satelliittikuvien käyttö koealaotantaan perustuvassa suuralueiden inventoinnissa. Joensuun yliopisto, metsätieteellinen tiedekunta. Metsätalouden suunnittelun syventävien opintojen tutkielma. 72 s.
Tokola, T. & Heikkilä, J. (1995) Satelliittikuvainventoinnin puuston tilavuusestimaattien luotettavuus tilatasolla. Research meeting of Forest Research Institute, North Karelia, Finland. Metsäntutkimuslaitoksen tiedonantoja 568:23–35.
Tokola, T., Pitkänen, J., Partinen, S., & Muinonen, E. (1996) Point accuracy of a nonparametric method in estimation of forest characteristics with different satellite materials. International Journal of Remote Sensing, 12:2333–2351.
Tomppo, E. (1990) Designing a satellite image-aided national forest inventory. Proceedings from SNS/IUFRO workshop in Umeå 26–28 Feb. 1990. Remote Sensing Laboratory, Swedish University of Agricultural Sciences, Report 4:43–47.
Tomppo, E., Katila, M., Moilanen, J., Mäkelä, H. & Peräsaari, J. (1998) Kunnittaiset metsävaratiedot 1990–1994 (Forest resources per municipalities 1990–1994). Metsätieteen aikakauskirja 4B. (In Finnish).
Tuominen, S. & Poso, S. (2001) Improving multi-source forest inventory by weighting auxiliary data sources. Silva Fennica 35(2):203–214.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Holopainen, M., Tuominen, S., Karjalainen, M., Hyyppä, J., Vastaranta, M., Hyyppä, H. (2009). Accuracy of High-Resolution Radar Images in the Estimation of Plot-Level Forest Variables. In: Sester, M., Bernard, L., Paelke, V. (eds) Advances in GIScience. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00318-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-642-00318-9_4
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00317-2
Online ISBN: 978-3-642-00318-9
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)