Abstract
In this paper we investigate different approaches we developed in order to classify opinion and discover opinion sources from text, using affect, opinion and attitude lexicon. We apply these approaches on the discussion topics contained in a corpus of American Congressional speech data. We propose three approaches to classifying opinion at the speech segment level, firstly using similarity measures to the affect, opinion and attitude lexicon, secondly dependency analysis and thirdly SVM machine learning. Further, we study the impact of taking into consideration the source of opinion and the consistency in the opinion expressed, and propose three methods to classify opinion at the speaker intervention level, showing improvements over the classification of individual text segments. Finally, we propose a method to identify the party the opinion belongs to, through the identification of specific affective and non-affective lexicon used in the argumentations. We present the results obtained when evaluating the different methods we developed, together with a discussion on the issues encountered and some possible solutions. We conclude that, even at a more general level, our approach performs better than trained classifiers on specific data.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Pang, B., Lee, L.: Opinion Mining and Sentiment Analysis. Foundations and Trends in Information Retrieval 2(1-2), 1–135 (2008)
Balahur, A., Lloret, E., Ferrández, O., Montoyo, A., Palomar, M., Muñoz, R.: The DLSIUAES Team’s Participation in the TAC 2008 Tracks. In: Proceedings of the Text Analysis Conference 2008 Workshop, Washington, USA (2008)
Thomas, M., Pang, B., Lee, L.: Get out the vote: Determining support or opposition from Congressional floor-debate transcripts. In: Proceedings of EMNLP 2006 (2006)
Mullen, T., Malouf, R.: A preliminary investigation into sentiment analysis of informal political discourse. In: AAAI Symposium on Computational Approaches to Analysing Weblogs (AAAI-CAAW), pp. 159–162 (2006)
Turney, P., Mullen, T., Malouf, R.: A preliminary investigation into sentiment analysis of informal political discourse. In: Proceedings of the AAAI Symposium on Computational Approaches to Analysing Weblogs (AAAI-CAAW 2002) (2002)
Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 79–86 (2002)
Dave, K., Lawrence, S., Pennock, D.: Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of Product Reviews. In: Proceedings of WWW 2003 (2003)
Gamon, M.: Sentiment classification on customer feedback data: Noisy data, large feature vectors, and the role of linguistic analysis. In: Proceedings of the International Conference on Computational Linguistics (COLING) (2004)
Matsumoto, S., Takamura, H., Okumura, M.: Sentiment classification using word sub-sequences and dependency sub-trees. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS, vol. 3518, pp. 301–311. Springer, Heidelberg (2005)
Ng, V., Dasgupta, S., Arifin, S.M.N.: Examining the role of linguistic knowledge sources in the automatic identification and classification of reviews. In: Proceedings of the COLING/ACL Main Conference Poster Sessions, July 2006, pp. 611–618. Association for Computational Linguistics, Sydney (2006)
Laver, M., Benoit, K., Garry, J.: Extracting policy positions from political texts using wor words as data. American Political Science Review 97, 311–331 (2003)
Martin, L.W., Vanberg, G.: A robust transformation procedure for interpreting political text. Political Analysis 16, 93–100 (2008)
Lin, W.-H., Wilson, T., Wiebe, J., Hauptmann, A.: Which side are you on? Identifying perspectives at the document and sentence levels. In: Lin, et al. (eds.) Proceedings of the Conference on Natural Language Learning (CoNLL 2006) (2006)
Strapparava, C., Valitutti, A.: WordNet-Affect: an affective extension of WordNet. In: Proceedings ofthe 4th International Conference on Language Resources and Evaluation (LREC 2004), Lisbon, pp. 1083–1086 (May 2004)
Scherer, K., Wallbott, H.G.: The ISEAR Questionnaire and Codebook (1997)
Balahur, A., Montoyo, A.: An Incremental Multilingual Approach to Forming a Culture Dependent Emotion Triggers Database. In: Proceedings of the 8th International Conference on Terminology and Knowledge Engineering (TKE 2008), Copenhagen (2008)
Balahur, A., Montoyo, A.: Multilingual Feature–driven Opinion Mining and Summarization from Customer Reviews. In: Kapetanios, E., Sugumaran, V., Spiliopoulou, M. (eds.) NLDB 2008. LNCS, vol. 5039, pp. 345–346. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Balahur, A., Kozareva, Z., Montoyo, A. (2009). Determining the Polarity and Source of Opinions Expressed in Political Debates. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2009. Lecture Notes in Computer Science, vol 5449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00382-0_38
Download citation
DOI: https://doi.org/10.1007/978-3-642-00382-0_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00381-3
Online ISBN: 978-3-642-00382-0
eBook Packages: Computer ScienceComputer Science (R0)