Skip to main content

Ant Colony Optimization Algorithms for Shortest Path Problems

  • Conference paper
Network Control and Optimization (NET-COOP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5425))

Included in the following conference series:

  • 707 Accesses

Abstract

We propose four variants of a recently proposed multi-timescale algorithm in [1] for ant colony optimization and study their application on a multi-stage shortest path problem. We study the performance of the various algorithms in this framework. We observe that one of the variants consistently outperforms the algorithm in [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Borkar, V.S., Das, D.: A novel ACO algorithm for optimization via reinforcement and initial bias. Swarm Intelligence, special issue on Ant Colony Optimization (to appear, 2008)

    Google Scholar 

  2. Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  3. Dorigo, M., Blum, C.: Ant colony optimization theory: A survey. TCS: Theoretical Computer Science 345 (2005)

    Google Scholar 

  4. Gutjahr, W.J.: A graph-based ant system and its convergence. Future Generation Comp. Syst. 16(8), 873–888 (2000)

    Article  Google Scholar 

  5. Stutzle, T., Dorigo, M.: A short convergence proof for a class of ant colony optimization algorithms. IEEE-EC 6, 358–365 (2002)

    Google Scholar 

  6. Merkle, D., Middendorf, M.: Modeling the dynamics of ant colony optimization. Evolutionary Computation 10(3), 235–262 (2002)

    Article  MATH  Google Scholar 

  7. Blum, C., Dorigo, M.: Search bias in ant colony optimization: on the role of competition-balanced systems. IEEE Trans. Evolutionary Computation 9(2), 159–174 (2005)

    Article  Google Scholar 

  8. Meuleau, N., Dorigo, M.: Ant colony optimization and stochastic gradient descent. Artificial Life 8(2), 103–121 (2002)

    Article  Google Scholar 

  9. Di Caro, G.A., Ducatelle, F., Gambardella, L.M.: AntHocNet: An ant-based hybrid routing algorithm for mobile ad hoc networks. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 461–470. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. Ghassemlooy, Z., Tekiner, F., Srikanth, T.R.: Comparison of the q-routing and shortest path routing algorithms. In: Proc. of the 5th Annual Postgraduate Symp. on the Convergence of Telecommunications, Networking and Broadcasting (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kolavali, S.R., Bhatnagar, S. (2009). Ant Colony Optimization Algorithms for Shortest Path Problems. In: Altman, E., Chaintreau, A. (eds) Network Control and Optimization. NET-COOP 2008. Lecture Notes in Computer Science, vol 5425. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00393-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00393-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00392-9

  • Online ISBN: 978-3-642-00393-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics