Abstract
A novel framework is described for mining fuzzy Association Rules (ARs) relating the properties of composite attributes, i.e. attributes or items that each feature a number of values derived from a common schema. To apply fuzzy Association Rule Mining (ARM) we partition the property values into fuzzy property sets. This paper describes: (i) the process of deriving the fuzzy sets (Composite Fuzzy ARM or CFARM) and (ii) a unique property ARM algorithm founded on the correlation factor interestingness measure. The paper includes a complete analysis, demonstrating: (i) the potential of fuzzy property ARs, and (ii) that a more succinct set of property ARs (than that generated using a non-fuzzy method) can be produced using the proposed approach.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gyenesei, A.: A Fuzzy Approach for Mining Quantitative Association Rules. Acta Cybernetical 15(2), 305–320 (2001)
Lee, C.H., Chen, M.S., Lin, C.R.: Progressive Partition Miner, an Efficient Algorithm for Mining General Temporal Association Rules. IEEE Trans. on Knowledge and Data Engineering 15(4), 1004–1017 (2003)
Kuok, C., Fu, A., Wong, H.: Mining Fuzzy Association Rules in Databases. ACM SIGMOD Record 27(1), 41–46 (1998)
Dubois, D., Hüllermeier, E., Prade, H.: A Systematic Approach to the Assessment of Fuzzy Association Rules. DM and Knowledge Discovery Journal 13(2), 167–192 (2006)
Bodon, F.: A Fast Apriori implementation. In: Proc. (FIMI 2003), IEEE ICDM Workshop on Frequent Itemset Mining Implementations, Florida, USA, vol. 90 (2003)
Coenen, F., Leng, P., Goulbourne, G.: Tree Structures for Mining Association Rules. Data Mining and Knowledge Discovery 8(1), 25–51 (2004)
Chen, G., Wei, Q.: Fuzzy Association Rules and the Extended Mining Algorithms. Information Sciences 147(1-4), 201–228 (2002)
Wang, K., Liu, J.K., Ma, W.: Mining the Most Reliable Association Rules with Composite Items. In: Proc. ICDMW 2006, pp. 749–754 (2006)
Delgado, M., Marin, N., Sanchez, D., Vila, M.A.: Fuzzy Association Rules, General Model and Applications. IEEE Transactions on Fuzzy Systems 11(2), 214–225 (2003)
Muyeba, M., Sulaiman, M., Malik, Z., Tjortjis, C.: Towards Healthy Association Rule Mining (HARM), A Fuzzy Quantitative Approach. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 1014–1022. Springer, Heidelberg (2006)
Agrawal, R., Srikant, R.: Quest Synthetic Data Generator. IBM Almaden Research Center
Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules Between Sets of Items in Large Databases. In: Proc. ACM SIGMOD Int. Conf. on Management of Data, Washington, D.C, pp. 207–216 (1993)
Srikant, R., Agrawal, R.: Mining Quantitative Association Rules in Large Relational Tables. In: Proc. ACM SIGMOD Conf. on Management of Data, pp. 1–12. ACM Press, Montreal (1996)
Au, W.H., Chan, K.: Farm, A Data Mining System for Discovering Fuzzy Association Rules. In: Proc. 8th IEEE Int’l Conf. on Fuzzy Systems, Seoul, Korea, pp. 1217–1222 (1999)
Kim, W., Bertino, E., Garza, J.: Composite objects revisited. ACM SIGMOD Record 18(2), 337–347 (1989)
Ye, X., Keane, J.A.: Mining Composite Items in Association Rules. In: Proc. IEEE Int. Conf. on Systems, Man and Cybernetics, pp. 1367–1372 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Muyeba, M., Khan, M.S., Coenen, F. (2009). A Framework for Mining Fuzzy Association Rules from Composite Items. In: Chawla, S., et al. New Frontiers in Applied Data Mining. PAKDD 2008. Lecture Notes in Computer Science(), vol 5433. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00399-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-642-00399-8_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00398-1
Online ISBN: 978-3-642-00399-8
eBook Packages: Computer ScienceComputer Science (R0)