Skip to main content

3P: Personalized Pregnancy Prediction in IVF Treatment Process

  • Conference paper
Electronic Healthcare (eHealth 2008)

Abstract

We present an intelligent learning system for improving pregnancy success rate of IVF treatment. Our proposed model uses an SVM based classification system for training a model from past data and making predictions on implantation outcome of new embryos. This study employs an embryo-centered approach. Each embryo is represented with a data feature vector including 17 features related to patient characteristics, clinical diagnosis, treatment method and embryo morphological parameters. Our experimental results demonstrate a prediction accuracy of 82.7%. We have obtained the IVF dataset from Bahceci Women Health, Care Centre, in Istanbul, Turkey.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Steptoe, P.C., Edwards, R.G.: Birth After Re-implantation of a Human Embryo. Lancet 2, 366 (1978)

    Article  Google Scholar 

  2. Van Steirteghem, A.C., Nagy, Z., Joris, H.: Higher Fertilization and Implantation Rates After Intracytoplasmic Sperm Injection. Human Reproduction 8, 1061–1066 (1993)

    Google Scholar 

  3. Shen, S., Khabani, A., Klein, N., Battaglia, D.: Statistical Analysis of Factors Affecting Fertilization Rates and Clinical Outcome Associated with Intracytoplasmic Sperm Injection. American Society for Reproductive Medicine 79 (2003)

    Google Scholar 

  4. Holte, J., Berglund, L., Milton, K., Garello, C., Gennarelli, G., Revelli, A., Bergh, T.: Construction of an Evidence Based Integrated Morphology Cleavage Embryo Score for Implantation Potential of Embryo Scored and Transferred on day 2 After Oocyte Retrieval. Human Reproduction 22, 548–557 (2007)

    Article  Google Scholar 

  5. Jurisica, I., Mylopoulos, J., Glasgow, J., Shapiro, H., Casper, R.F.: Case-Based Reasoning in IVF: Prediction and Knowledge Mining. Artificial Intelligence in Medicine 12 (1998)

    Google Scholar 

  6. Saith, R., Srinivasan, A., Michie, D., Sargent, I.: Relationships Between the Developmental Potential of Human In-Vitro Fertilization Embryos and Features Describing the Embryo, Oocyte and Follicle. Human Reproduction Update 4, 121–134 (1998)

    Article  Google Scholar 

  7. Passmore, L., Goodside, J., Hamel, L., Gonzalez, L., Silberstein, T., Trimarchi, J.: Assessing Decision Tree Models for Clinical In-Vitro Fertilization Data. Technical report, Dept. of Computer Science and Statistics University of Rhode Island (2003)

    Google Scholar 

  8. Trimarchi, J.R., Goodside, J., Passmore, L., Silberstein, T., Hamel, L., Gonzalez, L.: Comparing Data Mining and Logistic Regression for Predicting IVF Outcome. Fertil. Steril. (2003)

    Google Scholar 

  9. Manna, C., Patrizi, G., Rahman, A., Sallam, H.: Experimental Results on the Recognition of Embryos in Human-Assisted Reproduction. Reproductive Bimedicine Online 8, 460–469 (2004)

    Google Scholar 

  10. Morales, D.A., Bengoetxea, E., Larranaga, B., Garcia, M., Franco, Y., Fresnada, M., Merino, M.: Bayesian Classification for the Selection of In Vitro Human Embryos Using Morphological and Clinical Data. Computer Methods and Programs in Biomedicine 90, 104–116 (2008)

    Article  Google Scholar 

  11. Ciray, H.N., Bener, F., Karagenc, L., Ulug, U., Bahceci, M.: Impact of Assisted Hatching on ART Outcome in Women with Endometriosis. Human Reproduction (2005)

    Google Scholar 

  12. Ciray, H.N., Ulug, U., Tosun, S., Erden, H.F., Bahceci, M.: Outcome of 1114 ICSI and Embryo Transfer Cycles of Women 40 Years of Age and Over. Biomed Online 13, 516–522 (2006)

    Article  Google Scholar 

  13. Ciray, H.N., Tosun, S., Hacifazlioglu, O., Mesut, A., Bahceci, M.: Prolonged Duration of Transfer Does Not Affect Outcome in Cycles with Good Embryo Quality. Fertil. Steril. (2007)

    Google Scholar 

  14. Baskeles, B., Turhan, B., Bener, A.: Software Effort Estimation Using Machine Learning Methods. In: ISCIS 2007, Ankara, Turkey (2007)

    Google Scholar 

  15. Alpaydın, E.: Introduction to Machine Learning. MIT Press, Cambridge (2004)

    Google Scholar 

  16. Menzies, T., Turhan, B., Bener, A., Gay, G., Cukic, B., Jiang, Y.: Implications of Ceiling Effects in Defect Predictors. In: PROMISE 2008, Leipzig, Germany (2008)

    Google Scholar 

  17. Chang, C., Lin, C.: Libsvm: A Library for Support Vector Machines (2001)

    Google Scholar 

  18. Blake, C., Merz, C.: UCI Repository of Machine Learning Databases (1998), http://www.ics.uci.edu/mlearn/MLRepository.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Uyar, A., Ciray, H.N., Bener, A., Bahceci, M. (2009). 3P: Personalized Pregnancy Prediction in IVF Treatment Process. In: Weerasinghe, D. (eds) Electronic Healthcare. eHealth 2008. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 0001. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00413-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00413-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00412-4

  • Online ISBN: 978-3-642-00413-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics