Skip to main content

See ColOr: Seeing Colours with an Orchestra

  • Chapter
Human Machine Interaction

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 5440))

Abstract

The See Color interface transforms a small portion of a coloured video image into sound sources represented by spatialised musical instruments. Basically, the conversion of colours into sounds is achieved by quantisation of the HSL (Hue, Saturation and Luminosity) colour system. Our purpose is to provide visually impaired individuals with a capability of perception of the environment in real time. In this work we present the system’s principles of design and several experiments that have been carried out by several blindfolded persons. The goal of the first experiment was to identify the colours of main features in static pictures in order to interpret the image scenes. Participants found that colours were helpful to limit the possible image interpretations.

Afterwards, two experiments based on a head mounted camera have been performed. The first experiment pertains to object manipulation. It is based on the pairing of coloured socks, while the second experiment is related to outdoor navigation with the goal of following a coloured sinuous path painted on the ground. The socks experiment demonstrated that blindfolded individuals were able to accurately match pairs of coloured socks. The same participants successfully followed a red serpentine path painted on the ground for more than 80 meters.

Finally, we propose an original approach for a real time alerting system, based on the detection of visual salient parts in videos. The particularity of our approach lies in the use of a new feature map constructed from the depth gradient. From the computed feature maps we infer conspicuity maps that indicate areas that are appreciably different from their surrounding. Then a specific distance function is described, which takes into account both stereoscopic camera limitations and user’s choices. We also report how we automatically estimate the relative contribution of each conspicuity map, which enables the unsupervised determination of the final saliency map, indicating the visual salience of all points in the image. We demonstrate here that this additional depth-based feature map allows the system to detect salient regions with good accuracy in most situations, even in the presence of noisy disparity maps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. World Health Organisation: Magnitude and causes of visual impairment. Fact Sheet No. 282 (November 2004), http://www.who.int/mediacentre/factsheets/fs282/en/

  2. Just, M., Carpenter, P.: Eye fixations and cognitive processes. Cognitive Psychology 8, 441–480 (1976)

    Article  Google Scholar 

  3. Mannos, J., Sakrison, D.: The effects of a visual fidelity criterion on the encoding of images. IEEE Transactions on Information Theory 20, 525–536 (1974)

    Article  MATH  Google Scholar 

  4. Kelly, D.: Retinal inhomogenity. i. spatiotemporal contrast sensitivity. Journal of the Optical Society of America 1, 107–113 (1984)

    Google Scholar 

  5. Way, T., Barner, K.: Automatic visual to tactile translation, part i: human factors, access methods and image manipulation. IEEE Transactions on Rehabilitation Engineering 5, 81–94 (1997)

    Article  Google Scholar 

  6. Loomis, J.M., Lederman, S.J.: Tactual perception. In: Handbook of Perception and Human Performance. Cognitive Processes and Performance, vol. 2, John Wiley and Sons, New York (1986)

    Google Scholar 

  7. Burdea, G.: Force and touch feedback for virtual reality. John Wiley and Sons, New York (1996)

    Google Scholar 

  8. Bach-y-Rita, P., Collins, C., Saunders, F., White, B., Scadden, L.: Vision substitution by tactile image projection. Nature 221, 963–964 (1969)

    Article  Google Scholar 

  9. Bach-y-Rita, P.: Visual information through the skin: a tactile vision substitution system (tvss). In: Transactions - American Academy of Ophthalmology and Otolaryngology, vol. 78 (September 1974); Symposium on Prosthetic Aids for the Blind

    Google Scholar 

  10. Kaczmarek, K., Bach-y Rita, P., Tompkins, W.: A tactile vision-substitution system for the blind: computer-controlled partial image sequencing. IEEE Transactions on Biomedical Engineering 32, 602–608 (1985)

    Article  Google Scholar 

  11. Parkes, D.: An audio-tactile device for the acquisition, use and management of spatially distributed information by visually impaired people. In: Symposium on Maps and Graphics for Visually Handicapped People, pp. 30–35 (1988)

    Google Scholar 

  12. Kawai, Y., Tomita, F.: Evaluation of interactive tactile display system. In: Proceedings of the International Conference on Computers Helping People with Special Needs (ICCHP 1998), pp. 29–36 (1998)

    Google Scholar 

  13. Maucher, T., Meier, K., Schemmel, J.: An interactive tactile graphics display. In: Proceedings of the International Symposium on Signal Processing and its Applications (ISSPA), Kuala Lumpur, Malaysia, pp. 190–193 (2001)

    Google Scholar 

  14. Pun, T., Roth, P., Bologna, G., Moustakas, K., Tzovaras, D.: Image and video processing for visually handicapped people. Eurasip International Journal of Image and Video Processing 2007 (2007), http://www.hindawi.com/GetArticle.aspx?doi=10.1155/2007/25214

  15. Ruff, R., Perret, E.: Auditory spatial pattern perception aided by visual choices. Psychological Research 38, 369–377 (1976)

    Article  Google Scholar 

  16. Lakatos, S.: Recognition of complex auditory-spatial patterns. Perception 22, 363–374 (1993)

    Article  Google Scholar 

  17. Kay, L.: A sonar aid to enhance spatial perception of the blind: Engineering design and evaluation. The Radio and Electronic Engineer 44, 605–627 (1974)

    Article  Google Scholar 

  18. Meijer, P.: An experimental system for auditory image representations. IEEE Transactions on Biomedical Engineering 39, 112–121 (1992)

    Article  Google Scholar 

  19. Capelle, C., Trullemans, C., Arno, P., Veraart, C.: A real time experimental prototype for enhancement of vision rehabilitation using auditory substitution. IEEE Transactions on Biomedical Engineering 45, 1279–1293 (1998)

    Article  Google Scholar 

  20. Cronly-Dillon, J., Persaud, K., Gregory, R.: The perception of visual images encoded in musical form: a study in cross-modality information. Proceedings of Biological Sciences 266, 2427–2433 (1999)

    Article  Google Scholar 

  21. Gonzalez-Mora, J., Rodriguez-Hernandez, A., Rodriguez-Ramos, L., Dfaz-Saco, L., Sosa, N.: Development of a new space perception system for blind people, based on the creation of a virtual acoustic space. In: Mira, J. (ed.) IWANN 1999. LNCS, vol. 1607, pp. 321–330. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  22. Bologna, G., Vinckenbosch, M.: Eye tracking in coloured image scenes represented by ambisonic fields of musical instrument sounds. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3561, pp. 327–337. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Bologna, G., Deville, B., Pun, T., Vinckenbosch, M.: Identifying major components of pictures by audio encoding of colors. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4528, pp. 81–89. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Bologna, G., Deville, B., Pun, T., Vinckenbosch, M.: Transforming 3d coloured pixels into musical instrument notes for vision substitution applications. EURASIP Journal on Image and Video Processing 2007 (2007), http://www.hindawi.com/getarticle.aspx?doi=10.1155/2007/76204

  25. Deville, B., Bologna, G., Vinckenbosch, M., Pun, T.: Depth-based detection of salient moving objects in sonified videos for blind users. In: VISAPP 2008, International Conference on Computer Vision Theory and Applications (January 2008)

    Google Scholar 

  26. Begault, R.: 3-D Sound for Virtual Reality and Multimedia. Boston A.P. Professional (1994)

    Google Scholar 

  27. Brown, C., Duda, R.: A structural model for binaural sound synthesis. IEEE Transactions on Speech and Audio Processing 6 (1998)

    Google Scholar 

  28. Algazi, V., Duda, R., Thompson, D., Avendano, C.: The cipic hrtf database. In: Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA 2001), New Paltz, NY (2001)

    Google Scholar 

  29. Landragin, F.: Saillance physique et saillance cognitive. Cognition, Representation, Langage 2 (2004), http://edel.univ-poitiers.fr/corela/document.php?id=142

  30. Navalpakkam, V., Itti, L.: An integrated model of top-down and bottom-up attention for optimizing detection speed. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2049–2056 (2006)

    Google Scholar 

  31. Peters, R.J., Itti, L.: Beyond bottom-up: Incorporating task-dependent influences into a computational model of spatial attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (June 2007)

    Google Scholar 

  32. Hoffman, D., Singh, M.: Salience of visual parts. Cognition 63, 29–78 (1997)

    Article  Google Scholar 

  33. Kadir, T., Brady, M.: Scale, saliency and image description. International Journal of Computer Vision 45, 83–105 (2001)

    Article  MATH  Google Scholar 

  34. Lowe, D.: Object recognition from local scale-invariant features. In: Seventh International Conference on Computer Vision (ICCV 1999), vol. 2 (1999)

    Google Scholar 

  35. Bay, H., Tuytelaars, T., Gool, L.V.: Surf: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 7–13. Springer, Heidelberg (2006)

    Google Scholar 

  36. Milanese, R., Gil, S., Pun, T.: Attentive mechanism for dynamic and static scene analysis. Optical Engineering 34, 2428–2434 (1995)

    Article  Google Scholar 

  37. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machcine Intelligence 20, 1254–1259 (1998)

    Article  Google Scholar 

  38. Maki, A., Nordlund, P., Eklundh, J.: A computational model of depth-based attention. In: Proceedings of the International Conference on Pattern Recognition (ICPR 1996) (1996)

    Google Scholar 

  39. Ouerhani, N., Hügli, H.: Computing visual attention from scene depth. In: Proceedings of the 15th International Conference on Pattern Recognition, vol. 1, pp. 375–378 (2000)

    Google Scholar 

  40. Jost, T., Ouerhani, N., von Wartburg, R., Müri, R., Hügli, H.: Contribution of depth to visual attention: comparison of a computer model and human. In: Early cognitive vision workshop, Isle of Skye, Scotland (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deville, B., Bologna, G., Vinckenbosch, M., Pun, T. (2009). See ColOr: Seeing Colours with an Orchestra. In: Lalanne, D., Kohlas, J. (eds) Human Machine Interaction. Lecture Notes in Computer Science, vol 5440. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00437-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00437-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00436-0

  • Online ISBN: 978-3-642-00437-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics