Skip to main content

Diaphony of Uniform Samples over Hemisphere and Sphere

  • Conference paper
Numerical Analysis and Its Applications (NAA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5434))

Included in the following conference series:

  • 1888 Accesses

Abstract

The sampling of certain solid angle is a fundamental operation in realistic image synthesis, where the rendering equation describing the light propagation in closed domains is solved. In this work we consider the problem for generation of uniformly distributed random samples over hemisphere and sphere. Using two algorithms we obtain samples in orthogonal spherical triangle and spherical quadrangle. Our aim is to prove uniform distribution of the obtained samples. The importance of the uniformly distributed samples is determined by the effectiveness of the algorithms for numerical solution of the rendering equation. We use numerical characteristic for uniform distribution of points, called diaphony. The diaphony of these samples is calculated numerically. Analysis and comparison of the obtained results are made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dimov, I.T., Penzov, A.A., Stoilova, S.S.: Parallel Monte Carlo Sampling Scheme for Sphere and Hemisphere. In: Li, Z., Vulkov, L.G., WaÅ›niewski, J. (eds.) NAA 2004. LNCS, vol. 3401, pp. 148–155. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Dimov, I.T., Penzov, A.A., Stoilova, S.S.: Parallel Monte Carlo Approach for Intgration of the Rendering Equation. In: Li, Z., Vulkov, L.G., WaÅ›niewski, J. (eds.) NAA 2004. LNCS, vol. 3401, pp. 140–147. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Grozdanov, V., Stoilova, S.: On the Theory of b-adic Diaphony. Comp. Ren. Akad. Bul. Sci. 54(3), 31–34 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2, 84–90 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hellekalek, P., Leeb, H.: Dyadic Diaphony. Acta Arithmetica LXXX(2), 187–196

    Google Scholar 

  6. Keller, A.: Quasi-Monte Carlo Methods in Computer Graphics: The Global Illumination Problem. Lectures in Applied Mathematics 32, 455–469 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Roth, K.: On irregularities of distribution. Mathematika 1, 73–79 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  8. Weyl, H.: Ãœber die Gleichverteilung von Zahlen mod. Eins. Math. Ann. 77(S), 313–352 (1916)

    Article  MATH  Google Scholar 

  9. Zinterhof, P.: Ãœber einige Abschätzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden. Sitzungsber. Osterr. Akad. Wiss. Math.-Naturwiss. abt II 185, 121–132 (1976)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dimov, I.T., Stoilova, S.S., Mitev, N. (2009). Diaphony of Uniform Samples over Hemisphere and Sphere. In: Margenov, S., Vulkov, L.G., Waśniewski, J. (eds) Numerical Analysis and Its Applications. NAA 2008. Lecture Notes in Computer Science, vol 5434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00464-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00464-3_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00463-6

  • Online ISBN: 978-3-642-00464-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics