Abstract
In this paper, we describe a Godunov-type fully discrete scheme for Hamilton-Jacobi equations on triangular meshes. This scheme is an extension of the Lin-Tadmor and Kurganov-Tadmor fully discrete nonoscillatory central schemes to unstructured triangular meshes. In this new construction, we propose a new, “genuinely multidimensional”, nonoscillatory reconstruction. The construction is simple, universal and deviates from the existing high-order extensions of the central and central-upwind schemes for Hamilton-Jacobi equations.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kružkov, S.N.: Generalized solutions of Hamilton-Jacobi equations of eikonal type. I. Statement of the problems; existence, uniqueness and stability theorems; certain properties of the solutions. Mat. Sb. 98(140), 3(11), 450–493, 496 (1975)
Barles, G.: Solutions de viscosité des équations de Hamilton-Jacobi. Mathématiques & Applications, vol. 17. Springer, Heidelberg (1994)
Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27(1), 1–67 (1992)
Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277(1), 1–42 (1983)
Crandall, M.G., Evans, L.C., Lions, P.L.: Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 282(2), 487–502 (1984)
Lions, P.L.: Generalized solutions of Hamilton-Jacobi equations. Research Notes in Mathematics, vol. 69. Pitman, Boston (1982)
Souganidis, P.E.: Approximation schemes for viscosity solutions of Hamilton-Jacobi equations. J. Differential Equations 59(1), 1–43 (1985)
Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)
Osher, S., Shu, C.W.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28(4), 907–922 (1991)
Abgrall, R.: Numerical discretization of the first-order Hamilton-Jacobi equation on triangular meshes. Comm. Pure Appl. Math. 49(12), 1339–1373 (1996)
Jiang, G.S., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21(6), 2126–2143 (2000)
Zhang, Y.T., Shu, C.W.: High-order WENO schemes for Hamilton-Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 24(3), 1005–1030 (2002)
Lin, C.T., Tadmor, E.: High-resolution nonoscillatory central schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21(6), 2163–2186 (2000)
Levy, D., Nayak, S., Shu, C.W., Zhang, Y.T.: Central WENO schemes for Hamilton-Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 28(6), 2229–2247 (2006)
Kurganov, A., Tadmor, E.: New high-resolution semi-discrete central schemes for Hamilton-Jacobi equations. J. Comput. Phys. 160(2), 720–742 (2000)
Bryson, S., Levy, D.: High-order semi-discrete central-upwind schemes for multi-dimensional Hamilton-Jacobi equations. J. Comput. Phys. 189(1), 63–87 (2003)
Bryson, S., Levy, D.: High-order central WENO schemes for multidimensional Hamilton-Jacobi equations. SIAM J. Numer. Anal. 41(4), 1339–1369 (2003)
Kurganov, A., Noelle, S., Petrova, G.: Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23(3), 707–740 (2001)
Bryson, S., Kurganov, A., Levy, D., Petrova, G.: Semi-discrete central-upwind schemes with reduced dissipation for Hamilton-Jacobi equations. IMA J. Numer. Anal. 25(1), 113–138 (2005)
Christov, I., Popov, B.: New non-oscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws. J. Comput. Phys. 227(11), 5736–5757 (2008)
Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)
Shu, C.W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Statist. Comput. 9(6), 1073–1084 (1988)
Shu, C.W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Popov, P., Popov, B. (2009). A Second Order Central Scheme for Hamilton-Jacobi Equations on Triangular Grids. In: Margenov, S., Vulkov, L.G., Waśniewski, J. (eds) Numerical Analysis and Its Applications. NAA 2008. Lecture Notes in Computer Science, vol 5434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00464-3_55
Download citation
DOI: https://doi.org/10.1007/978-3-642-00464-3_55
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00463-6
Online ISBN: 978-3-642-00464-3
eBook Packages: Computer ScienceComputer Science (R0)