Skip to main content

On an Adaptive Semirefinement Multigrid Algorithm for Convection-Diffusion Problems

  • Conference paper
Numerical Analysis and Its Applications (NAA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5434))

Included in the following conference series:

  • 1867 Accesses

Abstract

A multigrid algorithm with adaptive semirefinement is presented for the solution of convection-diffusion problems. The method is based on the discontinuous Galerkin discretisation, which can conveniently handle grid adaptation. The algorithm is presented here for 2D problems, but it can be generalized for 3D. Rectangular finite elements are used and during the process of adaptation they may be refined in the x, y or in both (x and y) directions.

The adaptation criterion is based on the comparison of the discrete solution on the finest grid and its restrictions to the next (in the x and y directions) grids. It refines in the x or/and y direction those cells, where the corresponding difference is too large.

The numerical experiments show that the algorithm may be successfully used for resolution of boundary and interior layers. The comparison with a similar adaptive refinement multigrid algorithm shows that significantly less computer resources may be used for layers, almost parallel to the x or y axis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baumann, C.E., Oden, J.T.: A discontinuous hp finite element method for convection-diffusion problems. Comput. Meth. Appl. Mech. Engrg. 175, 311–341 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baumann, C.E.: An hp-adaptive discontinuous finite element method for computational fluid dynamics. PhD thesis, University of Texas at Austin (1997)

    Google Scholar 

  3. Hemker, P.W., Hoffmann, W., van Raalte, M.H.: Two-level Fourier analysis of a multigrid approach for discontinuous Galerkin discretisation. SIAM J. Sci. Comp. 25, 1018–1041 (2004)

    Article  MATH  Google Scholar 

  4. Hemker, P.W., van Raalte, M.H.: Fourier two-level analysis for higher dimensional discontinuous Galerkin discretisation. Comp. Vis. Sci. 7, 159–172 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Van Raalte, M.H., Hemker, P.W.: Two-level multigrid analysis for the convection-diffusion equation discretized by a discontinuous Galerkin method. Num. Lin. Alg. Appl. 12, 563–584 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Vasileva, D., Kuut, A., Hemker, P.W.: An adaptive multigrid strategy for convection-diffusion problems. In: Lirkov, I., Margenov, S., WaÅ›niewski, J. (eds.) LSSC 2005. LNCS, vol. 3743, pp. 138–145. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. De Zeeuw, P.M.: Development of semi-coarsening techniques. Appl. Numer. Math. 19, 433–465 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hackbusch, W.: Multi-Grid Methods and Applications. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  9. Wesseling, P.: An Introduction to Multigrid Methods. Wiley, New York (1991)

    MATH  Google Scholar 

  10. Brandt, A.: Multi-level adaptive solutions to boundary value problems. Math. Comp. 31, 333–390 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hemker, P.W.: On the structure of an adaptive multi-level algorithm. BIT 20, 289–301 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. McCormick, S.F.: Multilevel Adaptive Methods for Partial Differential Equations. SIAM, Philadelphia (1989)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vasileva, D. (2009). On an Adaptive Semirefinement Multigrid Algorithm for Convection-Diffusion Problems. In: Margenov, S., Vulkov, L.G., Waśniewski, J. (eds) Numerical Analysis and Its Applications. NAA 2008. Lecture Notes in Computer Science, vol 5434. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00464-3_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00464-3_67

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00463-6

  • Online ISBN: 978-3-642-00464-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics