Skip to main content

Classification Algorithms Based on Template’s Decision Rules

  • Conference paper
Man-Machine Interactions

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 59))

  • 1014 Accesses

Abstract

In the paper, classification algorithms are presented. These algorithms are based on nondeterministic decision rules that are called template’s decision rules. The conditional part of these rules is a template and the decision part is satisfactorily small set of decisions. Only rules with suficiently large support are used. The proposed classification algorithms were tested on the group of decision tables from the UCI Machine Learning Repository. Results of experiments show that the classification algorithms based on template’s decision rules are often better than the algorithms based on deterministic decision rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asuncion, A., Newman, D.J.: UCI machine learning repository (2007)

    Google Scholar 

  2. Bazan, J.G., Szczuka, M.S., Wojna, A., Wojnarski, M.: On the evolution of rough set exploration system. In: Tsumoto, S., Słowiński, R.W., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 592–601. Springer, Heidelberg (2004)

    Google Scholar 

  3. Dempster, A.P.: Upper and lower probabilities induced from a multivalued mapping. Annals of Mathematical Statistics 38, 325–339 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  4. Grzymała-Busse, J.W.: Rough-set and Dempster-Shafer approaches to knowledge acqusition uder uncertainty - a comparison. Tech. rep., Department of Computer Science, University of Kansas (1987)

    Google Scholar 

  5. Marszał-Paszek, B., Paszek, P.: Minimal templates and knowledge discovery. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS, vol. 4585, pp. 411–416. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Moshkov, M., Skowron, A., Suraj, Z.: On maximal consistent extensions of information systems. In: Wakulicz-Deja, A. (ed.) Decision Support Systems, pp. 199–206. University of Silesia Academic Press, Katowice (2007)

    Google Scholar 

  7. Nguyen, S.H., Skowron, A., Synak, P., Wróblewski, J.: Knowledge discovery in databases: Rough set approach. In: Mares, M., Meisar, R., Novak, V., Ramik, J. (eds.) Proceedings of the 7th International Congress on Fuzzy Systems Association World, vol. 2, pp. 204–209. Prague, Czech Republic (2007)

    Google Scholar 

  8. Pawlak, Z.: Rough sets. International Journal of Computer and Information Science 11, 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Shafer, G.: A mathematical theory of evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  10. Skowron, A., Grzymała-Busse, J.: From rough set theory to evidence theory. In: Yager, R.R., Kacprzyk, J., Fedrizzi, M. (eds.) Advances in the Dempster-Shafer theory of evidence, pp. 193–236. John Wiley & Sons, New York (1994)

    Google Scholar 

  11. Skowron, A., Suraj, Z.: Rough sets and concurrency. Bulletin of the Polish Academy of Sciences 41(3), 237–254 (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marszał-Paszek, B., Paszek, P., Wakulicz-Deja, A. (2009). Classification Algorithms Based on Template’s Decision Rules. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds) Man-Machine Interactions. Advances in Intelligent and Soft Computing, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00563-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00563-3_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00562-6

  • Online ISBN: 978-3-642-00563-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics