Abstract
In the paper, classification algorithms are presented. These algorithms are based on nondeterministic decision rules that are called template’s decision rules. The conditional part of these rules is a template and the decision part is satisfactorily small set of decisions. Only rules with suficiently large support are used. The proposed classification algorithms were tested on the group of decision tables from the UCI Machine Learning Repository. Results of experiments show that the classification algorithms based on template’s decision rules are often better than the algorithms based on deterministic decision rules.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Asuncion, A., Newman, D.J.: UCI machine learning repository (2007)
Bazan, J.G., Szczuka, M.S., Wojna, A., Wojnarski, M.: On the evolution of rough set exploration system. In: Tsumoto, S., Słowiński, R.W., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 592–601. Springer, Heidelberg (2004)
Dempster, A.P.: Upper and lower probabilities induced from a multivalued mapping. Annals of Mathematical Statistics 38, 325–339 (1967)
Grzymała-Busse, J.W.: Rough-set and Dempster-Shafer approaches to knowledge acqusition uder uncertainty - a comparison. Tech. rep., Department of Computer Science, University of Kansas (1987)
Marszał-Paszek, B., Paszek, P.: Minimal templates and knowledge discovery. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS, vol. 4585, pp. 411–416. Springer, Heidelberg (2007)
Moshkov, M., Skowron, A., Suraj, Z.: On maximal consistent extensions of information systems. In: Wakulicz-Deja, A. (ed.) Decision Support Systems, pp. 199–206. University of Silesia Academic Press, Katowice (2007)
Nguyen, S.H., Skowron, A., Synak, P., Wróblewski, J.: Knowledge discovery in databases: Rough set approach. In: Mares, M., Meisar, R., Novak, V., Ramik, J. (eds.) Proceedings of the 7th International Congress on Fuzzy Systems Association World, vol. 2, pp. 204–209. Prague, Czech Republic (2007)
Pawlak, Z.: Rough sets. International Journal of Computer and Information Science 11, 341–356 (1982)
Shafer, G.: A mathematical theory of evidence. Princeton University Press, Princeton (1976)
Skowron, A., Grzymała-Busse, J.: From rough set theory to evidence theory. In: Yager, R.R., Kacprzyk, J., Fedrizzi, M. (eds.) Advances in the Dempster-Shafer theory of evidence, pp. 193–236. John Wiley & Sons, New York (1994)
Skowron, A., Suraj, Z.: Rough sets and concurrency. Bulletin of the Polish Academy of Sciences 41(3), 237–254 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Marszał-Paszek, B., Paszek, P., Wakulicz-Deja, A. (2009). Classification Algorithms Based on Template’s Decision Rules. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds) Man-Machine Interactions. Advances in Intelligent and Soft Computing, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00563-3_33
Download citation
DOI: https://doi.org/10.1007/978-3-642-00563-3_33
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00562-6
Online ISBN: 978-3-642-00563-3
eBook Packages: EngineeringEngineering (R0)