Skip to main content

Computing the Longest Common Transposition-Invariant Subsequence with GPU

  • Conference paper
Man-Machine Interactions

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 59))

  • 1029 Accesses

Abstract

Finding a longest common transposition-invariant subsequence (LCTS) of two given integer sequences A = a 1 a 2...a m and B = b 1 b 2...b n (a generalization of the well-known longest common subsequence problem (LCS)) has arisen in the field of music information retrieval. In the LCTS problem, we look for an LCS for the sequences A + t = (a 1 + t)(a 2 + t)...(a m  + t) and B where t is any integer. Performance of the top graphical processing units (GPUs) outgrew the performance of the top CPUs a few years ago and there is a surge of interest in recent years in using GPUs for general processing.We propose and evaluate a bit-parallel algorithm solving the LCTS problem on a GPU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence algorithms. In: Proceedings of String Processing and Information Retrieval Symposium, pp. 39–48 (2000)

    Google Scholar 

  2. Crawford, T., Iliopoulos, C., Raman, R.: String matching techniques for musical similarity and melodic recognition. Computing in Musicology 11, 71–100 (1998)

    Google Scholar 

  3. Deorowicz, S.: Speeding up transposition-invariant string matching. Information Processing Letters 100(1), 14–20 (2006)

    Article  MathSciNet  Google Scholar 

  4. Grabowski, S., Deorowicz, S.: Nice to be a Chimera: A hybrid algorithm for the longest common transposition-invariant subsequence problem. In: Proceedings of the 9th International Conference on Modern Problems of Radio Engineering, Telecommmunication and Computer Science, Lviv-Slavsko, Ukraine, pp. 50–54 (2008)

    Google Scholar 

  5. Hyyrö, H.: Bit-parallel LCS-length computation revisited. In: Proceedings of the 15th Australasian Workshop on Combinatorial Algorithms (2004)

    Google Scholar 

  6. Koren, I.: Computer Arithmetic Algorithms. A.K. Peters, Limited (2002)

    Google Scholar 

  7. Lemström, K., Navarro, G., Pinzon, Y.: Practical algorithms for transposition-invariant string-matching. Journal of Discrete Algorithms 3(2-4), 267–292 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lemström, K., Tarhio, J.: Searching monophonic patterns within polyphonic sources. In: Proceedings of Recherche d’Information Assistée par Ordinateur, pp. 1261–1279 (2000)

    Google Scholar 

  9. Lemström, K., Ukkonen, E.: Including interval encoding into edit distance based music comparison and retrieval. In: Proceedings of Symposium on Creative & Cultural Aspects and Applications of Artificial Intelligence & Cognitive Science, pp. 53–60 (2000)

    Google Scholar 

  10. Mäkinen, V., Navarro, G., Ukkonen, E.: Transposition invariant string matching. Journal of Algorithms 56(2), 124–153 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. NVidia Corporation: CUDA Zone—The resource for CUDA developers, http://www.nvidia.com/object/cuda/_home.html

  12. NVidia Corporation: NVidia CUDATMProgramming Guide, version 2.1 (12/08/2008), http://www.nvidia.com/object/cuda_get.html

  13. Trevett, N.: OpenCL. The open standard for heterogeneous parallel programming, http://www.khronos.org/developers/library/overview/opencl_overview.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deorowicz, S. (2009). Computing the Longest Common Transposition-Invariant Subsequence with GPU. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds) Man-Machine Interactions. Advances in Intelligent and Soft Computing, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00563-3_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00563-3_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00562-6

  • Online ISBN: 978-3-642-00563-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics