Abstract
Finding a longest common transposition-invariant subsequence (LCTS) of two given integer sequences A = a 1 a 2...a m and B = b 1 b 2...b n (a generalization of the well-known longest common subsequence problem (LCS)) has arisen in the field of music information retrieval. In the LCTS problem, we look for an LCS for the sequences A + t = (a 1 + t)(a 2 + t)...(a m + t) and B where t is any integer. Performance of the top graphical processing units (GPUs) outgrew the performance of the top CPUs a few years ago and there is a surge of interest in recent years in using GPUs for general processing.We propose and evaluate a bit-parallel algorithm solving the LCTS problem on a GPU.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence algorithms. In: Proceedings of String Processing and Information Retrieval Symposium, pp. 39–48 (2000)
Crawford, T., Iliopoulos, C., Raman, R.: String matching techniques for musical similarity and melodic recognition. Computing in Musicology 11, 71–100 (1998)
Deorowicz, S.: Speeding up transposition-invariant string matching. Information Processing Letters 100(1), 14–20 (2006)
Grabowski, S., Deorowicz, S.: Nice to be a Chimera: A hybrid algorithm for the longest common transposition-invariant subsequence problem. In: Proceedings of the 9th International Conference on Modern Problems of Radio Engineering, Telecommmunication and Computer Science, Lviv-Slavsko, Ukraine, pp. 50–54 (2008)
Hyyrö, H.: Bit-parallel LCS-length computation revisited. In: Proceedings of the 15th Australasian Workshop on Combinatorial Algorithms (2004)
Koren, I.: Computer Arithmetic Algorithms. A.K. Peters, Limited (2002)
Lemström, K., Navarro, G., Pinzon, Y.: Practical algorithms for transposition-invariant string-matching. Journal of Discrete Algorithms 3(2-4), 267–292 (2005)
Lemström, K., Tarhio, J.: Searching monophonic patterns within polyphonic sources. In: Proceedings of Recherche d’Information Assistée par Ordinateur, pp. 1261–1279 (2000)
Lemström, K., Ukkonen, E.: Including interval encoding into edit distance based music comparison and retrieval. In: Proceedings of Symposium on Creative & Cultural Aspects and Applications of Artificial Intelligence & Cognitive Science, pp. 53–60 (2000)
Mäkinen, V., Navarro, G., Ukkonen, E.: Transposition invariant string matching. Journal of Algorithms 56(2), 124–153 (2005)
NVidia Corporation: CUDA Zone—The resource for CUDA developers, http://www.nvidia.com/object/cuda/_home.html
NVidia Corporation: NVidia CUDATMProgramming Guide, version 2.1 (12/08/2008), http://www.nvidia.com/object/cuda_get.html
Trevett, N.: OpenCL. The open standard for heterogeneous parallel programming, http://www.khronos.org/developers/library/overview/opencl_overview.pdf
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Deorowicz, S. (2009). Computing the Longest Common Transposition-Invariant Subsequence with GPU. In: Cyran, K.A., Kozielski, S., Peters, J.F., Stańczyk, U., Wakulicz-Deja, A. (eds) Man-Machine Interactions. Advances in Intelligent and Soft Computing, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00563-3_58
Download citation
DOI: https://doi.org/10.1007/978-3-642-00563-3_58
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00562-6
Online ISBN: 978-3-642-00563-3
eBook Packages: EngineeringEngineering (R0)