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Discrepancy Analysis of Complex Objects Using
Dissimilarities

Matthias Studer, Gilbert Ritschard, Alexis Gabadinho, and Nicolas S. Müller

Abstract. In this article we consider objects for which we have a matrix of dis-
similarities and we are interested in their links with covariates. We focus on state
sequences for which pairwise dissimilarities are given for instance by edit distances.
The methods discussed apply however to any kind of objects and measures of dis-
similarities. We start with a generalization of the analysis of variance (ANOVA) to
assess the link of complex objects (e.g. sequences) with a given categorical vari-
able. The trick is to show that discrepancy among objects can be derived from the
sole pairwise dissimilarities, which permits then to identify factors that most reduce
this discrepancy. We present a general statistical test and introduce an original way
of rendering the results for state sequences. We then generalize the method to the
case with more than one factor and discuss its advantages and limitations especially
regarding interpretation. Finally, we introduce a new tree method for analyzing dis-
crepancy of complex objects that exploits the former test as splitting criterion. We
demonstrate the scope of the methods presented through a study of the factors that
most discriminate Swiss occupational trajectories. All methods presented are freely
accessible in our TraMineR package for the R statistical environment.

Keywords: Distance, Dissimilarities, Analysis of Variance, Decision Tree, Tree
Structured ANOVA, State Sequence, Optimal Matching.

1 Introduction

The analysis of dissimilarities is used in a wide range of areas. It includes biol-
ogy with the analysis of genes and proteins (sequence alignment), ecology with the
comparison of ecosystems, sociology, network analysis where similarity is a central
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notion or the automatic analysis of texts to name just a few. When analyzed ob-
jects are not directly measurable or complex, such as sequences or ecosystems
for instance, it may be convenient to think in terms of dissimilarities between ob-
jects. Having such dissimilarities, it is customary to perform a cluster analysis to
get a reduced number of groups for facilitating interpretation. Once the groups are
identified, it is common practice to measure the relationship between these objects
and other variables of interest by using, for instance, association test or logistic
regression.

However, by focusing on clusters we loose indeed information, which may lead
to unfair conclusions, particularly for borderline objects. Similarly, it is possible
that some associations become less significant through this reduction of informa-
tion. The latter is not controlled and grouping choices, usually made on statistical
ground, may hide others alternatives that might show more interesting associations
with some explanatory factors.

In this article we present a set of methods to analyze dissimilarities directly, i.e.
without any prior clustering. They will allow us to measure the relationship between,
on the first hand, one or more covariates and, secondly, objects described using
dissimilarities. We begin by studying the link with a single variable building on the
test introduced by Anderson (2001). We extend then the analysis by introducing a
new test of the homogeneity of object discrepancy and propose, for the case of state
sequences, a new way to display the results. As a second step, we present the method
from McArdle and Anderson (2001) which enables us to include several variables
at the same time. Finally, we introduce a method based on induction trees that leads
to a better interpretation of the results. The method is similar to the one presented
in Geurts et al. (2006) but is more general since it is not limited to distances that
can be expressed as kernels. The criteria is also similar to the one used by Piccarreta
and Billari (2007) in an unsupervised setting. Finally, we give a short overview on
how to perform the presented methods in R by means of TraMineR. The scope
of the discussed methods is illustrated throughout the article by applying them on
occupational trajectory data.

2 The Illustrative Data Set

Let us start with a short application issue that will serve as illustration throughout
this article. We consider the study of occupational trajectories and expose the prob-
lematic so that examples and their interpretations will be clearer for the reader. We
are interested in the construction of professional trajectories and factors that may in-
fluence it. We focus on the study of working rates following the work of Levy et al.
(2006). We know that, while men’s trajectories are relatively homogeneous and ex-
hibit three main phases, namely “education”, “full time work” and “retirement”,
those of women are much more varied. Thus, their average curve of working rates
has a camel shape with a decrease in working rate when children are very young
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and a recovery thereafter. This average curve results however from very distinct
trajectories. Some women stop working completely or reduce their working rates
and then some of them return to work while others do not. In addition, some women
go back and forth between work and at home activity.

Besides the effects of sex on the trajectories, we are interested in testing the dif-
ferences in trajectories between generations (2 categories), family types — number
of children (4 cat.) and marital status (4 cat.) — and socio-economic situations —
father social status (10 cat.), income (4 cat.) and education (3 cat.). We are also in-
terested to test whether trajectories of younger generations are significantly more
diverse than those of older ones, and thus show a pluralization of trajectories.

To answer these questions, we use the data from the biographical retrospective
survey conducted by the Swiss Household Panel1 in 2002. We know, for each in-
dividual and every year, his occupational situation distinguishing between the fol-
lowing states: full time work, part-time work, negative break (eg., unemployment),
positive break (eg., travel), at home and training. We focus on the period between
ages 25 and 40 which is the key period regarding professional career deployment.
We retain all cases without missing data, that is 1560 trajectories. Since all retained
individuals are aged 40 at the survey time they are all born before 1962.

3 Measuring Association Using Dissimilarities

We now present a method based on the ANOVA principle to evaluate the association
between, on the one hand, objects characterized by a matrix of dissimilarities and,
secondly, a categorical variable. We take as a starting point the method introduced by
Anderson (2001) for analyzing ecosystems. We retain the more geometric approach
of Batagelj (1988) in its generalization of the Ward criterion. Finally, we apply these
methods on our example.

3.1 General Principles

Following the ANOVA principles, we seek to determine the part of the variance that
is “explained” by a given partition. The ANOVA is based on the notion of “sum of
squares” that is the sum of the squared Euclidian distances between each value and
the mean. This sum of squares, or inertia, can also be expressed as the average of
the pairwise squared Euclidian distances (d2

e,i j). These relationships are formalized
by Eq. (1).

SS =
n

∑
i=1

(yi− ȳ)2 =
1

2n

n

∑
i=1

n

∑
j=1

(yi− y j)2 =
1
n

n

∑
i=1

n

∑
j=i+1

d2
e,i j (1)

1 http://www.swisspanel.ch
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The concept of sum of squares can be generalized to other dissimilarity measures in
two alternative ways. Anderson (2001) proposes to replace the Euclidian distance
de,i j in Eq. (1) with any possibly non-Euclidian measure of dissimilarity di j yielding:

SS∗∗ =
1
n

n

∑
i=1

n

∑
j=i+1

d2
i j (2)

However, we prefer to substitute the non-Euclidean dissimilarity di j for the squared
Euclidean distance d2

e,i j rather than for the distance itself as proposed by Batagelj
(1988). We argue shortly for this choice in Sec. 3.2 below. The retained generaliza-
tion of SS reads thus:

SS∗ =
1
n

n

∑
i=1

n

∑
j=i+1

di j (3)

We use this expression for measuring the discrepancy of our complex objects. In-
deed, using SS = SS∗ in the definition s2 = 1

n SS of the sample variance we get a
fairly intuitive measure of the object discrepancy. Since the variance is theoretically
defined for Euclidean distances, we prefer the term “discrepancy” for this more gen-
eral setting. Interestingly, the discrepancy s2 is equal to half the average pairwise
dissimilarity, that is:

s2 =
1

2n2

n

∑
i=1

n

∑
j=1

di j (4)

When generalizing the notion of sum of squares to non-Euclidean measures of dis-
similarity, the Huygens theorem, Eq. (5), that states that the total sum of squares
(SST ) is the between sum of squares (SSB) plus the residual within sum of squares
(SSW ) remains valid (Batagelj, 1988).

SST = SSB + SSW (5)

We can thus apply the analysis of variance (ANOVA) machinery to our complex
objects.

The terms in Eq. (5) can all be derived from formula (3). The total sum of squares
(SST ) and the within sum of squares (SSW ) are computed directly with formula (3),
SSW being simply the sum of the within sums of squares of each subgroup. The
between sum of squares SSB is then obtained by taking the difference between the
SST and SSW . Using Eq. (5) we can assess the share of discrepancy explained by a
categorical or discretized continuous variable. In the spirit of ANOVA, this reduc-
tion of discrepancy is due to a difference in the positioning of the gravity centers
(or centroids) of the classes. This interpretation holds for any kind of distance even
though the concept of class center is not clearly defined for complex non numeric
objects (Batagelj, 1988). It is likely that the gravity centers will not belong to the
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object space, exactly as the mean of integer values may be a real non integer value.
Hence, conceptually, we look for the part of the discrepancy that is explained by
differences in group positioning and we measure this part with the R2 formula (6).
Alternatively, we may consider the F that compares the explained discrepancy to
the residual discrepancy. The F formula is given in Eq. (7), where n is the number
of cases and m the number of parameters.

R2 =
SSB

SST
(6)

F =
SSB/(m−1)
SSW /(n−m)

(7)

The statistical significance of the association, i.e. of the explained part of discrep-
ancy cannot be assessed with the F test as in classical ANOVA. Indeed, the F statis-
tic (7) does not follow a Fisher distribution with our complex objects for which
the normality assumption is hardly defendable. We consider therefore a permuta-
tion test (Anderson, 2001; Moore et al., 2003). This test works as follows. At each
step we change the complex object assigned to each case by means of a randomly
chosen permutation, which is equivalent to jointly permute the content of the rows
and columns of the distance matrix. We thus get a Fperm value for each permuta-
tion. Repeating this operation p times we end up with an empirical non parametric
distribution of F that characterizes its distribution under independence, i.e. assum-
ing the objects are assigned to the cases independently of their profile in terms of
explanatory factors. From this distribution, we can assess the significance of the ob-
served Fobs statistic by evaluating the proportion of Fperm that are higher than Fobs. It
is generally admitted that 5000 permutations are necessary to assess a significance
threshold of 1% and 1000 for a threshold of 5%.

3.2 Generalization Conditions

As mentioned above, we can generalize Eq. (1) either by substituting the dissimilar-
ity d for the Euclidean distance de or for its square d2

e . In this subsection, we justify
our preference for the latter solution, i.e. equation (3). Firstly, in the Euclidian case,
the second equality in Eq. (1) which links the sum of deviations to the mean to
the sum of pairwise differences follows from properties of signed deviances and
pairwise differences which do not hold for unsigned distances. Secondly, with this
choice, the non negativity of the contribution of any object to the total discrepancy
automatically results when the dissimilarity satisfies the triangle inequality.

In the Euclidian case, the equality (1) can be established by showing first the
following result (Späth, 1975):

n

∑
i=1

(yi− x)2 =
n

∑
i=1

(yi− ȳ)2 + n(ȳ− x)2 (8)
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Indeed, we have:

yi− x = (yi− ȳ)+ (ȳ− x) (9)

(yi− x)2 = (yi− ȳ)2 + 2(yi− ȳ)(ȳ− x)+ (ȳ− x)2

n

∑
i=1

(yi− x)2 =
n

∑
i=1

(yi− ȳ)2 + n(ȳ− x)2 + 2
n

∑
i=1

(yi− ȳ)(ȳ− x) (10)

Since, ∑n
i=1(yi − ȳ) = 0, the last term in (10) vanishes which yields Eq. (8). The

equality (1) results then by setting x = y j in (8) and summing over j = 1, · · · ,n.
Clearly, equality (9) does not hold if we replace differences yi−x, yi− ȳ and ȳ−x

with non negative dissimilarities. Likewise, the last term in (10) would not vanish
with non negative dissimilarities. Using the second solution (3), we do not have to
care about the deviation between objects. We just postulate that there exists a signed
deviation measure in the object space.

We now turn to our second argument regarding the contribution of an object
x to the total discrepancy. This contribution dxg̃ can be seen as the dissimilarity
between x and its (possibly virtual) gravity center g̃. Using the same scheme (3) of
generalization, it can be obtained by substituting dxg̃ to (ȳ− x)2 in Eq. (8) and by
isolating this term, which yields (Batagelj, 1988):

dxg̃ =
1
n

( n

∑
i=1

dxi−SS
)

=
1

2n2

n

∑
i=1

n

∑
j=1

(
2 ·dix−di j

)
(11)

This contribution to the discrepancy is non negative when the dissimilarity measure
respects the triangle inequality. Indeed, according to Eq. (11), dxg̃ is minimal when
each di j is maximal. Under the triangle inequality di j cannot exceed dxi + dx j and
hence, dxg̃ reaches its minimum when di j = dxi +dx j for all i and j. This minimum is
zero which implies dxg̃ ≥ 0. The non negativity of the contribution of x cannot be de-
duced from the triangle inequality property of the dissimilarity if we use definition (2)
of SS, i.e. if we replace the squared Euclidean distance with the squared similarity.

With the retained approach, negative contributions to the discrepancy can occur
with semi-metric dissimilarities, that is when the triangle inequality does not hold.
The “dissimilarity” dxg̃ becomes negative when adding x reduces the discrepancy
between the other objects. This can be the case when the distance between two objects,
say y and z, becomes shorter when we can pass through x, i.e. when dyz > dyx + dxz.
Such situation is quite usual in social network analysis. For instance, let us consider a
social network between x, y and z where the dissimilarity is equal to 1 for two people
that meet often and is equal to 10 when they never meet. The dissimilarity dxg̃ would
then be negative if x often meets y and z while y never meets z. From a social network
perspective, we would say that x plays a cohesive role in the network.

Though a negative contribution to the discrepancy makes sense for social net-
works, it is not the case for most applications. Hence, the results should be
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interpreted with caution when the dissimilarity measure is only semi-metric. In par-
ticular, one should be ready to admit and give sense to negative contributions to the
discrepancy.

3.3 Application

We now illustrate the proposed test on our example data about the study of occupa-
tional trajectories. We use optimal matching (OM) for measuring the dissimilarities
between trajectories that are indeed represented as state sequences. The OM dis-
similarity, also known as the edit distance, is the minimal cost of transforming one
sequence into the other using two types of transformation operations, namely indel
(insert or delete) and substitution of elements. The transformation cost is determined
by assigning indel and substitution costs. For our example, we computed the OM
distances with an indel cost set to 1 and substitution costs at 2. Notice that the OM
dissimilarity respects the triangle inequality. Indeed, dissimilarity being the minimal
cost for transforming a sequence y into z, we necessarily have dyz ≤ dyx + dxz.

The discrepancy of the occupational trajectories of the whole data set is 0.501
which is equal to half of the average edit distance (1.02). It is 0.118 for men and
0.614 for women indicating that women’s trajectories exhibit wider variety.

Table 1 summarizes the results of the discrepancy analysis for the whole popula-
tion as well as for men and women separately. In each case we considered individ-
ually each of the available predictive factors. The p-values of the tests are based on
1000 permutations.

Table 1 Association test with occupational trajectories

Total Men Women
Variable F R2 Sig F R2 Sig F R2 Sig

Sex 477.995 0.235 0.000
Father soc. status 1.578 0.009 0.029 2.085 0.026 0.005 1.205 0.013 0.163
Income 1.349 0.003 0.182 3.086 0.013 0.006 3.553 0.013 0.000
Education 18.486 0.023 0.000 20.632 0.054 0.000 6.287 0.015 0.000
Cohort 17.037 0.011 0.000 6.330 0.009 0.001 14.911 0.018 0.000
Children 13.704 0.026 0.000 1.006 0.004 0.391 25.740 0.085 0.000
Marital status 9.744 0.018 0.000 1.783 0.007 0.047 18.078 0.061 0.000

Not surprisingly, sex explains the biggest part of the discrepancy of trajectories
with a R2 that reaches 0.235. In other words, the sex variable explains 23.5% of
the discrepancy. The relationship is statistically significant since the Fobs = 477.995
was never attained amongst the thousand permutations. As for the other covariates,
results show that the Father’s social status and Education impact primarly male tra-
jectories while women’s trajectories are more strongly influenced by familial factors
such as the number of children and the marital status. than female trajectories.
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In summary, these first results show that the occupational trajectory is signif-
icantly influenced by most of the considered predictive variables. From the high
significance of the significance tests, differences in the positioning of the gravity
centers of groups of sequences clearly exist. Nevertheless, it is difficult to under-
stand and interpret these differences at this stage.

Fig. 1 Differences of trajectories according to sex

Figure 1, which presents a new way of displaying the differences between groups
of sequences, should help interpretation. The first two charts show men and women
trajectories using index-plots (Scherer, 2001). In these figures, each sequence is
represented by a time line split into segments colored according to the corresponding
occupational state.

To improve readability of the index-plots, we ordered the sequences according
to the first dimension of a PCA (Principal Coordinate Analysis) (Gower, 1966). If
ordering sequences by an underlying dimension facilitates the interpretation of the
index-plot, the plots provide conversely useful information for interpreting the PCA
axis. For instance, we observe in our case that the sequences are organized in a



Discrepancy Analysis of Complex Objects Using Dissimilarities 11

continuum ranging from full-time trajectories to trajectories where we stay at home
during the whole sequence. The axis can thus be read as a Full-time - At home axis.

The final chart exhibits the evolution of the strength of association between the
categorical covariate and a sliding two period long sub-sequence of the trajectory.
For each unit of time, we extracted a sub-sequence of two consecutive states for
which we calculated the distance matrix and the share of discrepancy explained
by the covariate. This representation helps at identifying the periods over which the
sequences are most differentiated by gender. It appears that gender differences reach
their peak around 35 years old.

4 Homogeneity of Discrepancy

In some situations, it may be of interest to test whether the discrepancies within
the groups differ significantly. From a geometric point of view, we are interested in
measuring differences in the diameter of the distribution of sequences within each
group. In classical analysis of variance, we could use a Bartlett’s test (Snedecor
and Cochran, 1989) that supposes equal variances under H0 or, in other words, the
homogeneity of variances. This test is based on the statistical distribution of the
statistic T defined by Eq. (12), where s2

i stands for the discrepancy within group i.
All terms in this equation can be calculated with the formulas already introduced.
As for the F , it is not possible in our non-Gaussian case to assume that this statistic
T has a known distribution. We use therefore again permutation tests to assess the
significance of differences in discrepancy.

T =
(n−m) ln

(
∑m

i=1
(ni−1)
(n−m) s2

i

)−∑m
i=1(ni−1) ln(s2

i )

1 + 1
3(m−1)

[
∑m

i=1
1

ni−1 − 1
n−m

] (12)

In the previous section, we found that men’s discrepancy is 0.118 against 0.614 for
women. This relatively high difference is confirmed by the Tobs which is 460.017,
a value that was attained by none of the thousand permutations. This allows us to
state that the discrepancies differ significantly with the sex of the respondent. More
interestingly from a sociological point of view, the discrepancy of the people born
after 1945 is significantly higher than those born earlier. We thus have clear evidence
that the diversity of occupational trajectories increased for younger generations.

5 Multi-factor Discrepancy Analysis

In Sec. 3.3 we examined the bivariate association between the trajectory and
each of the covariates considered independently. We consider here the general-
ization to the multi-factor case and adopt for that the framework of the general
multivariate analysis of variance. Several authors have considered such analyses
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from pairwise distances (Excoffier et al., 1992; Gower and Krzanowski, 1999; An-
derson, 2001; Zapala and Schork, 2006). We adopt the approach and formalism of
McArdle and Anderson (2001) who conducted a multi-factor analysis of ecosystems
on the bases the pairwise semi-metric distance of Bray-Curtis. However, as for the
simple discrepancy analysis and unlike McArdle and Anderson (2001) we substitute
the pairwise dissimilarity measure for the squared Euclidean distance rather than for
the distance itself.

Formally, we consider the multivariate regression model: Y = Xβ+ε , where Y is
the n×t matrix with n observed values of t response variables and X the n×m matrix
with the values of m predictors including a first column of ones corresponding to the
constant.

In the Euclidean case, the sum over the t response variables of their sums of
squares can be derived by means of the same Gower matrix as that used in PCA
(Gower, 1966). Similarly to McArdle and Anderson (2001), we generalize this anal-
ysis to any type of dissimilarities. Let 1 be a vector of ones of length n, I the identity
matrix and A a matrix with generic element ai j = − 1

2 di j, where di j is the dissimi-
larity between cases i and j, which we substitute for the squared Euclidean distance
in the original Gower’s formulation. The Gower matrix reads as follows

G =
(

I− 1
n

11′
)

A
(

I− 1
n

11′
)

(13)

with in our case a matrix A that results from the available pairwise dissimilarities.
The total sum of squares SST is equal to the trace of G. McArdle and Anderson
(2001) show that the explained sum of squares SSB and the residual sum of squares
SSW can be written as

SSB = tr
(
HGH

)
(14)

SSW = tr
[(

I−H
)
G
(
I−H

)]
(15)

where H = X(X′X)−1X′ is the idempotent matrix usually known as “hat” matrix in
linear regression. Using these two quantities we can derive a global pseudo-R2 and a
global pseudo-F statistic by applying Eqs. (6) and (7). Formula (14) and (15), how-
ever, allow us to account of any number of covariates and specifically of categorical
factors through their contrast or indicator coding.

As in the single discrepancy analysis, the F distribution is not relevant for the
pseudo-F and we consider again permutations tests for assessing its significance.

We may also consider the contribution of each covariate to the total discrepancy
reduction. As with multi-factor ANOVA there are different ways of looking at these
individual contributions. Shaw and Mitchell-Olds (1993) distinguish for instance a
Type I and a Type II method. Type I is incremental. Covariates are successively
added to the model and the contribution of each covariate is measured by the SSB

increase that results when it is introduced. With this method the measured impact of
each factor depends on the order in which they are introduced. With Type II, known
to be robust in the absence of interaction effects, the contribution of each covariate
is measured by the reduction of SSB that occurs when we drop it out from the full



Discrepancy Analysis of Complex Objects Using Dissimilarities 13

model, i.e. from the model with all covariates. We retain this second method and
hence compute the following F for each covariate v

Fv =
(SSBc −SSBv)/p
SSWc/(n−m−1)

(16)

where the SSBc and SSWc are the explained and residual sums of squares of the full
model, SSBv the explained sum of squares of the model after removing variable v,
and p the number of indicators or contrasts used to encode the covariate v.

Let us look at what this gives for our illustrative example. Table 2 shows the
results for two models, the complete model with all variables and a model obtained
after removing non significant covariates through a backward stepwise process.

Table 2 Multi-Factor Discrepancy Analysis

Full Model Backward Model
Variable Fv ΔR2

v Sig Fv ΔR2
v Sig

Sex 477.196 0.218 0.000 488.627 0.224 0.000
Education 8.230 0.008 0.000 10.986 0.010 0.000
Income 0.868 0.001 0.542
Father’s soc. status 1.167 0.005 0.241
Cohort 11.586 0.005 0.000 13.670 0.006 0.000
Children 9.887 0.014 0.000 10.313 0.014 0.000
Marital status 4.621 0.006 0.000 5.073 0.007 0.000

Ftot R2
tot Sig Ftot R2

tot Sig

Global 29.557 0.297 0.000 63.602 0.291 0.000

From the global statistics, the set of covariates provide overall significant infor-
mation about the diversity of occupational trajectories.

In the full model, the sex remains the most significant covariate. If we remove
this variable, the R2 of the model (= 0.297) decreases by 0.218. This difference is
significant since we have Fsex = 477.196, a value never attained with a thousand
permutations. On the contrary, the income is for instance not significant. Removing
it from the model reduces the R2 by only 0.001 and results in a Fincome value of
0.868, which was exceeded for 0.542 · 1000 = 542 of the thousand permutations.
Likewise, the father’s social status loses its significance in the multi-factor case.
Indeed, it becomes non-significant as soon as we control for the education level,
these two variables being strongly correlated and education being more significant.

The multi-factor approach provides information about the proper effect of the
covariates on the occupational trajectory, that is the part of the its total effect that
is not accounted for by already introduced factors. It is in that sense complemen-
tary to the single univariate discrepancy analysis that informs on the raw effect of
each covariate. Nevertheless, while the method permits us to know which effects
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are significant, it does not tell us much about what the effects are, i.e. about how
occupational trajectories may change with the value of the covariates. We propose
for that a tree approach which can be seen as an extension of the graphical display
shown in Fig. 1.

6 Tree Structured Analysis

This section introduces a new method based on the principle of induction trees for
analyzing the discrepancy of objects described by a dissimilarity matrix. Induction
trees work as follows (Breiman et al., 1984; Kass, 1980). They start with all indi-
viduals grouped in an initial node. Then, they recursively partition each node using
values of a predictor. At each node, the predictor and the split are chosen in such a
way that the resulting child nodes differ as much as possible from one another or
have, more or less equivalently, lowest within discrepancy. The process is repeated
on each new node until some stopping criterion is reached.

Recursive partitioning is known to provide an easily comprehensible view of
how each newly selected covariate nuances the effect of covariates introduced at
earlier levels. This requires indeed to display suitable information about the distri-
bution in each node. We could represent the centrotype, i.e. the observed object that
minimizes the dissimilarity (11) with the group gravity center. It would be more in-
structive to also render the within group discrepancy. Though this is not obvious for
any kind of complex objects, displaying index-plots as those used in Fig. 1 provides
a good solution for state sequences.

Beside the displayed node content, the originality of our approach resides in the
use of a splitting criterion derived from the pairwise dissimilarities, namely the uni-
variate pseudo-R2 that we described in Sec. 3. We select thus at each node the
predictor and binary split for which get the highest pseudo-R2, i.e. the split that
accounts for the greatest part of the object discrepancy. An alternative would be
to use the significance of the univariate pseudo-F. However, since this significance
must be determined through permutation tests we would end-up with an excessive
time complexity if we had to repeat it for each predictor and possible split. We con-
sider therefore the F significance only as a stopping criteria, i.e. we stop growing a
branch when we get a non-significant F for the selected split. This requires to run
the permutations only once at each node, which remains tractable.

Using the pseudo-R2 as splitting criterion condemns us to build binary trees.
Indeed, the R2 does not penalize for the number of groups and would hence always
select the maximal number of groups if we allowed n-ary splits. The R2 adjusted for
the number of groups as it is used in multiple regression would not be a satisfactory
solution since it is known to insufficiently penalize complexity. On the other hand,
information criteria such as the BIC seem hardly derivable in our setting where we
do not know the distribution of our statistics (R2, F or SSW ) under the independence
hypothesis.

It is worth mentioning that our tree building procedure resembles that proposed
in Geurts et al. (2006). However, our formulation is more general since it works
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with any kind of metric and non metric dissimilarities, while Geurts et al. (2006)’s
solution is restricted to dissimilarities that can be derived through the kernel trick.
For growing a tree from semi-metric dissimilarities we should indeed be ready to
accept and give sense to possible negative contributions to the variance.

Before looking at the example, let us add a few words about computational as-
pects. First, we can highlight that it is not necessary to recompute SSW from scratch
for each possible binary split that can be derived from a same predictor. Our algo-
rithm makes use of partial results first collected into a symmetric m×m matrix E,
where m is the number of different observed values of the predictor. Each element
ek� of E is defined as ek� = ∑i∈k∑ j∈� di j, that is as the sum of dissimilarities be-
tween on the one hand, cases that take the k-th value of the predictor and, on the
other hand, those that take the �-th value. The residual sum of squares for a group
of values G is then equal to SSG,res = 1

nG
(∑k∈G∑�≥k,�∈G ek�). Reusing this way the

same partial sums of dissimilarities may save a great amount of computation time
especially for categorical predictors with few different values.

Secondly, we may exploit the fact that the R2 can only decrease when merg-
ing categories. From matrix E we can compute the R2

ori that measures the part of
discrepancy explained by the predictor in its original form, i.e. with all its distinct
values. It then follows that this R2

ori is an upper bound for the best R2 that would
result from a binary split based on the considered predictor. Hence, when the R2

ori
of the current predictor does not exceed the R2 of the previously found best split, it
becomes unnecessary to test the splits for the current predictor.

The global quality of the tree can be assessed through the association strength be-
tween the objects and the leaf (terminal node) membership. The global multi-factor
pseudo-F gives us a way of testing the statistical significance of the obtained seg-
mentation and the global pseudo-R2 the part of the total discrepancy that is explained
by the tree.

Figure 2 shows the dissimilarity tree grown for our example of occupational tra-
jectories. The used stopping criteria are a p-value of 1% for the F test, a minimal
leaf size of 100 and a maximal depth of 5. In each node we see the plot of the
individual sequences as well as the node size and the discrepancy within the node
(var). At the bottom of each parent node we indicate the retained split predictor with
the associated R2 while the definition of the binary split may be inferred from the
indication at the top of the child nodes.

The overall tree R2 is 0.302, which is higher than for the models in Table 2. The
tree has thus a better explanatory power. We get this higher value by retaining only
4 predictors against 5 for the backward model. This may be explained by interac-
tion effects that the tree automatically accounts for and that were not considered in
the multi-factor discrepancy analysis. We thus can point out here that birth cohort
and number of children interact in their effect on female occupational trajectories
while birth cohort interacts with education in their effect on men trajectories. This
automatic detection of interaction is indeed a fundamental property of all induction
trees.

By looking at the displayed individual sequences, we are now able to gain knowl-
edge about what the effect of the predictors are. Clearly, men are characterized by
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training
at home
negative break
positive break
full time work
part−time work

Fig. 2 Regression tree based on pairwise dissimilarities between sequences

full time trajectories while part time and at home are typically found in women’s
trajectories. Among men, the choice of part-time seems to be related with higher
education. For women, occupational trajectories are more diversified. Those who
had at least one child have higher chance to experience part time work when they
were born after 1945. This birth cohort effect is, however, less pronounced among
those women who had more than two children.

7 Discrepancy Analysis in R with TraMineR

The methods presented in this article are all implemented in TraMineR (Gabadinho
et al., 2009) our free package for the R statistical environment (R Development Core
Team, 2008). We shortly show here how simple it is to use them. Assume that we
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have the following R objects defined in our environment: dm a matrix of dissimilar-
ities between cases, mydata a data.frame with the covariates and mysequences an
object containing the state sequences.

Univariate discrepancy analysis and test for homogeneity of discrepancy is per-
formed by calling the dissassoc function. This function takes three arguments: a
dissimilarity matrix, a factor and the number of permutation (R = 1000 by default).
The results presented in Sec. 3 were obtained with the following code:

R> dissassoc(dm, group = mydata$sex, R = 1000)

Likewise, we generated the bottom part of Fig. 1 by means of function seqdiff with
the code below.

R> mysequences.diff <- seqdiff(mysequences, group = mydata$sex)
R> plot(mysequences.diff)

The multi-factor results given in Table 2 were obtained with the dissmfac function.
The model is specified with a classical R formula in which the left hand side is
the dissimilarity matrix. The data argument specifies the data.frame containing the
covariates.

R> dissmfac(
+ dm ~ sex + cohort + education + fathsoc + income + children + marital,
+ data = mydata, R = 1000)

Tree structured analysis of dissimilarities is carried out with the disstree function.
The dissimilarity matrix and the predictors are passed to the function in the same
way as in dissmfac. Stopping criteria can be set with the following arguments: min-
Size for the minimum node size, maxdepth for the maximum tree depth and pval
for the minimum required p-value. The R option permits to control the number of
permutations used for computing the significance.

R> mytree <- disstree(
+ dm ~ sex + cohort + education + fathsoc + income + children + marital,
+ data = mydata, minSize = 100, maxdepth = 5, R = 1000, pval = 0.01)
R> print(mytree)

The resulting tree can then be plotted by calling the dot program of GraphViz2,
which is an open source graph visualization software (Gansner and North, 1999).
Assuming GraphViz is on the path, we get a tree similar to that of Fig. 2 but with
density plots instead of the index-plots just with the steps below. The plot is gener-
ated in file mytree.dot.svg.

R> seqtree2dot(mytree, filename = "mytree", seqs = mysequences,
+ plottype = "seqdplot")
R> shell("dot -Tsvg -O mytree.dot")

2 http://www.graphviz.org/
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8 Conclusion

The aim of this article was to propose tools for investigating how complex objects
characterized by their pairwise dissimilarities are related to covariates or predictive
attributes. The methods proposed are inspired from the classical ANOVA frame-
work. The basic trick consists in extending results that express the classical sum
of squares SS in terms of pairwise squared Euclidean distances to the case of any
possibly non metric dissimilarity. We designate this general setting as discrepancy
analysis. We proposed first a pseudo-R2 and a pseudo-F test for the univariate case
in which each covariate is examined separately. For this same univariate case we
discussed also a way of testing the homogeneity of the discrepancies among groups.
We then discussed the multi-factor case where we assess the impact of a covariate
by controlling for the effect of the other factors. Eventually, we introduced an origi-
nal tree structured method for discrepancy analysis. For both the univariate and tree
structured settings we considered also the question of depicting the effect of the co-
variates. The difficulty is here to find a suited way of representing the distribution of
the objects. We showed that index-plots prove useful when objects are of state se-
quences. However, more general solutions that could be used for any type of objects
would here be necessary and we are presently working on that.

The work presented leaves certainly place to improvements on several aspects.
For instance, we plan to further explore alternatives to the R2 splitting criteria used
in dissimilarity trees. We are looking for a way to use p-values of pseudo-F statistics
and for a penalized criteria that would permit n-ary splits.
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