Abstract
Image segmentation is a fundamental problem in image analysis and understanding. Among the existing approaches proposed to solve this problem, unsupervised classification or clustering is often involved in an early step to partition the space of pixel intensities (i.e. either grey levels, colours or spectral signatures). Since it completely ignores pixel neighbourhoods, a second step is then necessary to ensure spatial analysis (e.g. with a connected component labeling) in order to identify the regions built from the segmentation process. The lack of spatial information is a major drawback of the classification-based segmentation approaches, thus many solutions (where classification is used together with other techniques) have been proposed in the literature. In this paper, we propose a new formulation of the unsupervised classification which is able to perform image segmentation without requiring the need for some additional techniques. More precisely, we introduce a kmeans-like method where data to be clustered are pixels themselves (and not anymore their intensities or colours) and where distances between points and class centres are not anymore Euclidean but topographical. Segmentation is then an iterative process, where at each iteration resulting classes can be seen as influence zones in the context of mathematical morphology. This comparison provides some efficient algorithms proposed in this field (such as hierarchical queue-based solutions), while adding the iterative property of unsupervised classification methods considered here. Finally, we illustrate the potential of our approach by some segmentation results obtained on artificial and natural images.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chang, H., Yeung, D.: Robust path-based spectral clustering. Pattern Recognition 41, 191–203 (2008)
Chen, S., Zhang, D.: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics 34(4), 1907–1916 (2004)
Chen, T., Lu, Y.: Color image segmentation – an innovative approach. Pattern Recognition 35(2), 395–405 (2002)
Cheng, H., Sun, Y.: A hierarchical approach to color image segmentation using homogeneity. IEEE Transactions on Image Processing 9(12), 2071–2082 (2000)
Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)
Diday, E.: Une nouvelle méthode en classification automatique et reconnaissance des formes: la méthode des nuées dynamiques. Revue de Statistique Appliquée 19(2), 19–33 (1971)
Eum, K., Lee, J., Venetsanopoulos, A.: Color image segmentation using a possibilistic approach. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 1150–1155 (1996)
Fischer, B., Buhmann, J.: Path-based clustering for grouping of smooth curves and texture segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(4), 513–518 (2003)
Han, J., Kamber, M., Tung, A.: Spatial clustering methods in data mining: a survey. In: Miller, H., Han, J. (eds.) Geographic Data Mining and Knowledge Discovery. Taylor & Francis, Abington (2001)
Haralick, R., Shapiro, L.: Image segmentation techniques. Computer Vision, Graphics and Image Processing 29, 100–132 (1985)
Ilea, D., Whelan, P.: CTex – An Adaptive Unsupervised Segmentation Algorithm Based on Color-Texture Coherence. IEEE Transactions on Image Processing 17(10), 1926–1939 (2008)
Kaufman, L., Rousseeuw, P.: Finding groups in data: an introduction to cluster analysis. Wiley, New York (1990)
Krishnapuram, R., Freg, C.: Fitting an unknown number of lines and planes to image data through compatible cluster merging. Pattern Recognition (25), 385–400 (1992)
Leydier, Y., Bourgeois, F.L., Emptoz, H.: Sérialisation du k-means pour la segmentation des images en couleur: Application aux images de documents et autres. In: Colloque International Francophone sur l’Ecrit et le Document (CIFED) (2004)
Lezoray, O., Cardot, H.: Cooperation of color pixel classification schemes and color watershed: a study for microscopical images. IEEE Transactions on Image Processing 11(7), 783–789 (2002)
Liew, A., Leung, S., Lau, W.: Fuzzy image clustering incorporating spatial continuity. IEE Proceedings on Vision, Image and Signal Processing 147(2), 185–192 (2000)
Luo, M., Ma, Y., Zhang, H.: A spatial constrained k-means approach to image segmentation. In: Pacific Rim Conference on Multimedia, pp. 738–742 (2003)
Meyer, F.: Topographic distance and watershed lines. Signal Processing 38, 113–125 (1994)
Noordam, J., van den Broek, W., Buydens, L.: Geometrically guided fuzzy c-means clustering for multivariate image segmentation. In: IAPR International Conference on Pattern Recognition (ICPR), pp. 462–465 (2000)
Pappas, T.: An adaptive clustering algorithm for image segmentation. IEEE Transactions on Signal Processing 40, 901–914 (1992)
Pham, T.: Image segmentation using probabilistic fuzzy c-means clustering. In: IEEE International Conference on Image Processing (ICIP), pp. 722–725 (2001)
Philipp-Foliguet, S.: Segmentation d’images en régions floues. In: Rencontres Francophones sur la Logique Floue et ses Applications, La Rochelle, France, pp. 186–196 (2000)
Prêteux, F.: Watershed and skeleton by influence zones: a distance-based approach. Journal of Mathematical Imaging and Vision 1, 239–255 (1992)
Small, C.: A survey of multidimensional medians. International Statistical Review / Revue Internationale de Statistique 58(3), 263–277 (1990)
Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, Berlin (2003)
Tolias, Y., Panas, S.: Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions. IEEE Transactions on Systems, Man, and Cybernetics – Part A: Systems and Humans 28(3), 359–369 (1998)
Turi, R.: Clustering-Based Colour Image Segmentation. PhD dissertation, Monash University. 373 pages (2001)
Xia, Y., Feng, D., Wang, T., Zhao, R., Zhang, Y.: Image segmentation by clustering of spatial patterns. Pattern Recognition Letters 28, 1548–1555 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Lefèvre, S. (2010). A New Approach for Unsupervised Classification in Image Segmentation. In: Guillet, F., Ritschard, G., Zighed, D.A., Briand, H. (eds) Advances in Knowledge Discovery and Management. Studies in Computational Intelligence, vol 292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00580-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-00580-0_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00579-4
Online ISBN: 978-3-642-00580-0
eBook Packages: EngineeringEngineering (R0)