Skip to main content

Modeling Attention and Perceptual Grouping to Salient Objects

  • Conference paper
Attention in Cognitive Systems (WAPCV 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5395))

Included in the following conference series:

  • 1054 Accesses

Abstract

In this paper, we propose a biologically inspired model of the middle stages of attention, with specific algorithmic details. Existing computational models of attention concentrate on their role in visual feature extraction and the selection of spatial regions. However, these methods ignore the role of attention in other stages. Extension of these models has been proposed by augmenting the unit of attentional selection to “proto-objects”. In our approach, we extend attention to the middle stages and integrate the selection process with the perceptual grouping process. Integration is achieved by our innovative saliency driven perceptual grouping strategy, extending the traditional pixel-based saliency map to salient proto-objects. The proposed selective attention is made in two stages. Firstly, to achieve salient region localization, our method enhances the saliency map with region information from image segmentation and selects the most salient region (proto-object). Then, regions are organized using perceptual groupings, and their pop-out sequence is determined. Compared with traditional attention models our model provides saliency maps with meaningful region information, by eliminating misleading high-contrast edges, and focus of attention shifts in unit of perceptual object rather than spatial region. These two improvements fit to high stage vision information processing such as object recognition. Experiments in a reduced set of images show that our proposed model is able to automatically detect meaningful proto-objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Itti, L.: Models of Bottom-Up Attention and Saliency. In: Itti, L., Rees, G., Tsotsos, J.K. (eds.) Neurobiology of Attention, pp. 576–582. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

  2. Sun, Y.: Hierarchical Object-Based Visual Attention for Machine Vision. PhD. Dissertation, University of Edinburgh (2003)

    Google Scholar 

  3. Jarmasz, J.: Towards the Integration of Perceptual Organization and Visual Attention: The Inferential Attentional Allocation Model. PhD. Dissertation, Carleton University (2001)

    Google Scholar 

  4. Treisman, A., Gelade, G.: A feature Integration Theory of Attention. Cognitive Psychology 12, 97–136 (1982)

    Article  Google Scholar 

  5. Sun, Y., Fisher, R.: Object-based Visual Attention for Computer Vision. Artificial Intelligence, 77–123 (2003)

    Google Scholar 

  6. Scholl, B.J.: Objects and Attention: the state of the art. Cognition 80(1-2), 1–46 (2001)

    Article  CAS  PubMed  Google Scholar 

  7. Walther, D., Rutishauser, U., Koch, C., Perona, P.: Selective visual attention enables learning and recognition of multiple objects in cluttered scenes. Computer Vision and Image Understanding 100, 41–63 (2005)

    Article  Google Scholar 

  8. Walther, D., Koch, C.: Modeling attention to salient proto-objects. Neural Networks 19, 1395–1407 (2006)

    Article  PubMed  Google Scholar 

  9. Fritz, G., Seifert, C., Paletta, L., Bischof, H.: Attentive object detection using an information theoretic saliency measure. In: Paletta, L., Tsotsos, J.K., Rome, E., Humphreys, G.W. (eds.) WAPCV 2004. LNCS, vol. 3368, pp. 29–41. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Frintrop, S.: VOCUS: A Visual Attention System for Object Detection and Goal-Directed Search. LNCS (LNAI), vol. 3899. Springer, Heidelberg (2006)

    Book  Google Scholar 

  11. Liu, H., Jiang, S., Huang, Q., Xu, C., Gao, W.: Region-Based Visual Attention Analysis with Its Application in Image Browsing on Small Displays. In: MM 2007, pp. 305–308 (2007)

    Google Scholar 

  12. Meyer, F.: An overview of Morphological Segmentation. IJPRAI 15(7), 1089–1118 (2001)

    Google Scholar 

  13. O’Callaghan, R.J., Bull, D.R.: Combined Morphological-Spectral Unsupervised Image Segmentation. Image Processing 14(1), 49–62 (2005)

    Article  Google Scholar 

  14. Congyan, L., De, X., Xu, Y.: Perception-Oriented Prominent Region Detection in Video Sequences. Informatica 29, 253–260 (2005)

    Google Scholar 

  15. Beucher, S.: Watershed, hierarchical segmentation and waterfall algorithm. In: Beucher, S. (ed.) Mathematical Morphology and its Applications to Image Processing. In: Proc. ISMM 1994, pp. 69–76 (1994)

    Google Scholar 

  16. Marcotegui, B., Beucher, S.: Fast implementation of waterfall based on graphs. In: Proc. 7th international symposium on mathematical morphology, pp. 177–186 (2005)

    Google Scholar 

  17. Cheng, H.-D., Sun, Y.: A hierarchical approach to color image segmentation using homogeneity. IEEE Trans. on Image Processing 9(12), 2071–2082 (2000)

    Article  CAS  Google Scholar 

  18. Luo, J., Guo, C.: Perceptual grouping of segmented regions in color images. Pattern Recognition 36, 2781–2792 (2003)

    Article  Google Scholar 

  19. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology 4, 219–227 (1985)

    CAS  PubMed  Google Scholar 

  20. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 20, 1254–1259 (1998)

    Article  Google Scholar 

  21. Itti, L., Koch, C.: Computational modelling of visual attention. Nature Reviews Neuroscience 2(3), 194–203 (2001)

    Article  CAS  PubMed  Google Scholar 

  22. Klein, R.: Inhibition of return. Trends Cogn. Sci. 4, 138–147 (2000)

    Article  CAS  PubMed  Google Scholar 

  23. Aziz, M.Z., Mertsching, B.: Pop-out and IOR in Static Scenes with Region Based Visual Attention. In: The 5th International Conference on Computer Vision Systems (ICVS) (2007)

    Google Scholar 

  24. Henderickx, D., Maetens, K., Soetens, E.: Inhibition of return: A bottom-up routed attentional process (submitted, 2008)

    Google Scholar 

  25. Xie, X., Liu, H., Ma, W.-Y., Zhang, H.-J.: Browsing large pictures under limited display sizes. IEEE Trans. on Multimedia 8(4), 707–715 (2006)

    Article  Google Scholar 

  26. Henderickx, D., Maetens, K., Soetens, E.: Understanding the Interactions of Bottom-up and Top-down Attention for the Development of a Humanoid Robot System. In: Paletta, L., Tsotsos, J.K. (eds.) Proceedings of the Fifth International Workshop on Attention and Performance in Computational Vision, Santorini, Greece, pp. 124–137 (May 2008)

    Google Scholar 

  27. Henderickx, D., Maetens, K., Geerinck, T., Soetens, E.: Modeling the interactions of bottom-up and top-down guidance in visual attention. In: Paletta, L., Tsotsos, J.K. (eds.) WAPCV 2008. LNCS (LNAI), vol. 5395. Springer, Heidelberg (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Geerinck, T., Sahli, H., Henderickx, D., Vanhamel, I., Enescu, V. (2009). Modeling Attention and Perceptual Grouping to Salient Objects. In: Paletta, L., Tsotsos, J.K. (eds) Attention in Cognitive Systems. WAPCV 2008. Lecture Notes in Computer Science(), vol 5395. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00582-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00582-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00581-7

  • Online ISBN: 978-3-642-00582-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics