Abstract
In prior work, we put forth a model of visual saliency motivated by information theoretic considerations [1]. In this effort we consider how this proposal extends to explain saliency in the spatiotemporal domain and further, propose a distributed representation for visual saliency comprised of localized hierarchical saliency computation. Evidence for the efficacy of the proposal in capturing aspects of human behavior is achieved via comparison with eye tracking data and a discussion of the role of neural coding in the determination of saliency suggests avenues for future research.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bruce, N.D.B., Tsotsos, J.K.: Saliency Based on Information Maximization. In: Advances in Neural Information Processing Systems, vol. 18, pp. 155–162 (June 2006)
Itti, L., Koch, C., Niebur, E.: A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 (1998)
Bruce, N.D.B., Tsotsos, J.K.: An information theoretic model of saliency and visual search. In: Paletta, L., Rome, E. (eds.) WAPCV 2007. LNCS, vol. 4840, pp. 171–183. Springer, Heidelberg (2007)
Tsotsos, J.K., Culhane, S., Yan Kei Wai, W., Lai, Y., Davis, N., Nuflo, F.: Modeling visual attention via selective tuning. Artificial intelligence 78, 507–545 (1995)
Bell, A.J., Sejnowski, T.J.: The ‘Independent Components’ of Natural Scenes are Edge Filters. Vision Research 37(23), 3327–3338 (1997)
Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)
Wachtler, T., Lee, T.-W., Sejnowski, T.J.: The chromatic structure of natural scenes. J. Opt. Soc. Amer. A 18(1), 65–77 (2001)
van Hateren, J.H., van der Schaaf, A.: Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. R. Soc. Lond. B 265, 359–366 (1998)
Lee, T.W., Girolami, M., Sejnowski, T.J.: Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation 11(2), 417–441 (1999)
Itti, L., Baldi, P.: Bayesian Surprise Attracts Human Attention. In: Advances in Neural Information Processing Systems, vol. 19, pp. 547–554 (2006)
Yu, C., Levi, D.M.: Surround modulation in human vision unmasked by masking experiments. Nature 3(7), 724–728 (2000)
Williams, A.L., Singh, K.D., Smith, A.T.: Surround modulation measured with fMRI in the visual cortex. Journal of Neurophysiology 89(1), 525–533 (2003)
Xing, J., Heeger, D.J.: Measurement and Modeling of Centre-Surround Suppression and Enhancement. Vision Research 41, 571–583 (2001)
Shen, Z.M., Xu, W.F., Li, C.Y.: Cue-invariant detection of centre surround discontinuity by V1 neurons in awake macaque monkey. Journal of Physiology 583, 581–592 (2007)
Yu, C., Klein, A.K., Levi, D.M.: Cross-and Iso-oriented surrounds modulate the contrast response function: The effect of surround contrast. Journal of Vision 3, 527–540 (2003)
Petrov, Y., McKee, S.P.: The effect of spatial configuration on surround suppression of contrast sensitivity. Journal of Vision 6(3), 224–238 (2006)
Adini, Y., Sagi, D.: Recurrent networks in human visual cortex: psychophysical evidence. Journal of the Optical Society of America A 18(8), 2228–2236 (2001)
Olzak, L.A., Laurinen, P.I.: Contextual Effects in fine spatial discriminations. Nature 381(6583), 607–609 (2005)
Cannon, M.W., Fullencamp, S.C.: A model for inhibitory lateral interaction effects in perceived contrast. Vision Research 36(8), 1115–1125 (1996)
Xing, J., Heeger, D.J.: Centre-surround interactions in foveal and peripheral vision. Vision Research 40, 3065–3072 (2000)
Yu, C., Klein, A.K., Levi, D.M.: Surround modulation of perceived contrast and the role of brightness induction. Journal of Vision 1, 18–31 (2001)
Zhang, B., Zheng, J., Watanabe, I., Maruko, I., Bi, H., Smith, E.L., Chino, Y.: Delayed maturation of receptive field centre/surround mechanisms in V2. Proceedings of the National Academy of Sciences 102(16), 5862–5867 (2005)
Solomon, S.G., Pierce, J.W., Lennie, P.: The impact of suppressive surrounds on chromatic properties of cortical neurons. Journal of Neuroscience 24(1), 148–160 (2004)
Schein, S.J., Desimone, R.: Spectral properties of V4 Neurons in the macaque. Journal of Neuroscience 10(10), 3369–3389 (1990)
Kondo, H., Komatsu, H.: Suppression on neuronal responses by a metacontrast masking stimulus. Neuroscience Research 36(1), 27–33 (2000)
Tadin, D., Lappin, J.S.: Optimal Size for perceiving motion decreases with contrast. Vision Research 45, 2059–2064 (2005)
Born, R.T., Bradley, D.C.: Structure and Function of Visual Area MT. Annual Review of Neuroscience 28, 157–189 (2005)
Huang, X., Albright, T.D., Stoner, G.R.: Adaptive Surround Modulation in Cortical Area MT. Neuron 53(5), 761–770 (2007)
Eifuku, S., Wurtz, R.H.: Response to Motion in Extrastriate Area MSTI: Centre-Surround Interactions. Journal of Neurophysiology 80(11), 282–296 (1998)
Foldiak, P., Young, M.: Sparse coding in the primate cortex. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 895–898 (1995)
David, S.V., Vinje, W.E., Gallant, J.L.: Natural stimulus statistics alter the receptive field structure of v1 neurons. Journal of Neuroscience 24(31), 6991–7006 (2004)
Simoncelli, E.P., Olshausen, B.A.: Natural image statistics and neural representation. Annual Review Neuroscience 24, 1193–1216 (2001)
Quian Quiroga, R., Reddy, L., Kreiman, G., Koch, C., Fried, I.: Invariant visual representation by single neurons in the human brain. Proceedings of the National Academy of Science 102(16), 5862–5867 (2005)
Kreiman, G.: Neural coding: computational and biophysical perspectives. Physics of Life Reviews 2, 71–102 (2004)
Sagi, D.: The combination of spatial frequency and orientation is effortlessly perceived. Perception and Psychophysics 43, 601–603 (1988)
Wolfe, J.M., Horowitz, T.S.: What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience 5, 1–7 (2004)
Enns, J.T., Rensink, R.A.: Sensitivity to three-dimensional orientation in visual search. Psychological Science 1, 323–326 (1990)
Ramachandran, V.S.: Perception of Shape from Shading. Nature, 163–166 (1988)
Hershler, O., Hochstein, S.: At first sight: a high-level pop out effect for faces. Vision Research 45(13), 1707–1724 (2005)
Sergent, J., Ohta, S., MacDonald, B.: Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain 115(1), 15–36 (1992)
Kanwisher, N., McDermott, J., Chun, M.M.: The fusiform face area: a module in human extrastriate cortex specialized for face perception. Journal of Neuroscience 17(11), 4302–4311 (2006)
Grill-Spector, K., Sayres, R., Ress, D.: High-resolution imaging reveals highly selective nonface clusters in the fusiform face area. Nature Neuroscience 9(9), 1177–1185 (2006)
Wang, Q., Cavanagh, P., Green, M.: Familiarity and pop-out in visual search. Perception and Psychophysics 56(5), 495–500 (1994)
Shen, J., Reingold, E.M.: Visual search asymmetry: the influence of stimulus familiarity and low-level features. Perception and Psychophysics 63(3), 464–475 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bruce, N.D.B., Tsotsos, J.K. (2009). Spatiotemporal Saliency: Towards a Hierarchical Representation of Visual Saliency. In: Paletta, L., Tsotsos, J.K. (eds) Attention in Cognitive Systems. WAPCV 2008. Lecture Notes in Computer Science(), vol 5395. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00582-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-00582-4_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00581-7
Online ISBN: 978-3-642-00582-4
eBook Packages: Computer ScienceComputer Science (R0)