Skip to main content

Deformation Waves in Solids

  • Chapter
  • First Online:
Applied Wave Mathematics
  • 1863 Accesses

Abstract

The basic theoretical concepts are analysed on the basis of the continuum theory for modelling deformation waves in solids. First a brief description of modelling for homogeneous solids is presented, which is widely known in practice. Special attention is paid to advanced theories focusing on microstructured materials. Several approaches are described: the separation of macro- and microstructure, the balance of pseudomomentum, and the concept of internal variables. Characteristically, the advanced models describe the hierarchy of waves, which includes the dependence on the internal scale(s). The resulting dispersive effects are often accompanied by nonlinearities and in this case solitary waves may emerge. Finally, some challenges in the theory of waves are briefly listed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achenbach, J.D.: Wave Propagation in Elastic Solids. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  2. Berezovski, A., Berezovski, M., Engelbrecht, J.: Waves in inhomogeneous solids. In: Quak, E., Soomere, T. (eds.) Applied Wave Mathematics, pp. 55–81. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Bland, D.R.: Nonlinear Dynamic Elasticity. Blaisdell, Waltham (1969)

    MATH  Google Scholar 

  4. Bland, D.R.: Wave Theory and Applications. Clarendon Press, Oxford (1988)

    MATH  Google Scholar 

  5. Brillouin, L.: Wave Propagation in Periodic Structures. Dover, Toronto (1953)

    MATH  Google Scholar 

  6. Capriz, G.: Continua with Microstructure. Springer, New York (1989)

    MATH  Google Scholar 

  7. Cauchy, A.L.: Sur les équations qui experiment les conditions d’équilibre ou les lois du mouvement intérieur d’un corps solide, élastique ou non élastique. Ex. de Math. 3, 160–187 (1822) = Oeuvres (2) 8, 253–277

    Google Scholar 

  8. Engelbrecht, J.: Nonlinear Wave Processes of Deformation in Solids. Pitman, London (1983)

    MATH  Google Scholar 

  9. Engelbrecht, J.: An Introduction to Asymmetric Solitary Waves. Longman, Harlow (1991)

    MATH  Google Scholar 

  10. Engelbrecht, J.: Nonlinear Waves Dynamics. Complexity and Simplicity. Kluwer, Dordrecht (1997)

    Google Scholar 

  11. Engelbrecht, J., Berezovski, A., Pastrone, P., Braun, M.: Waves in microstructured materials and dispersion. Phil. Mag. 85, 4127–4141 (2005)

    Article  Google Scholar 

  12. Engelbrecht, J., Pastrone, F., Braun, M., Berezovski, A.: Hierarchies of waves in nonclassical materials. In: Delsanto, P.-P. (ed.) Universality of Nonclassical Nonlinearity: Application to Non-Destructive Evaluation and Ultrasonics, pp. 29–47. Springer, New York (2007)

    Google Scholar 

  13. Eringen, A.C.: Nonlinear Theory of Continuous Media. McGraw-Hill, New York (1962)

    Google Scholar 

  14. Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–923 (1966)

    MATH  MathSciNet  Google Scholar 

  15. Eringen, A.C.: Microcontinuum Field Theories. Foundations and Solids. Springer, New York (1999)

    Google Scholar 

  16. Jeffrey, A., Engelbrecht, J. (eds.): Nonlinear Waves in Solids. Springer, Wien (1994)

    MATH  Google Scholar 

  17. Jeffrey, A., Kawahara, T.: Asymptotic Methods in Nonlinear Wave Theory. Pitman, Boston (1982)

    MATH  Google Scholar 

  18. Kolsky, H.: Stress Waves in Solids, 2nd ed. Dover, New York (1963)

    Google Scholar 

  19. Lamb, H.: Hydrodynamics. Cambridge University Press (1879); see also the 1997 edition from CUP.

    Google Scholar 

  20. Lamé, G.: Leçons sur la Theorie Mathématique de l’Elasticité des Corps Solides. Bachelier, Paris (1852)

    Google Scholar 

  21. Love, A.E.N.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press (1906)

    Google Scholar 

  22. Maugin, G.A.: Internal variables and dissipative structures. J. Non-Equilib. Thermodyn. 15, 173–192 (1990)

    Article  Google Scholar 

  23. Maugin, G.A.: Thermomechanics of Plasticity and Fracture. Cambridge University Press (1992)

    Google Scholar 

  24. Maugin, G.A.: Material Inhomogeneities in Elasticity. Chapman & Hall, London (1993)

    MATH  Google Scholar 

  25. Maugin, G.A., Muschik, W.: Thermodynamics with internal variables, Part I: general concepts, Part II: applications. J. Non-Equilib. Thermodyn. 19, 217–249, 250–289 (1994)

    Article  MATH  Google Scholar 

  26. Maugin, G.A.: Nonlinear Waves in Elastic Crystals. Oxford University Press (1999)

    Google Scholar 

  27. Maugin, G.A.: Pseudo-plasticity and pseudo-inhomogeneity effects in materials mechanics. J. Elasticity 71, 81–103 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Miklowitz, J.: The Theory of Elastic Waves and Waveguides, 2nd ed. North-Holland, Amsterdam (1980)

    Google Scholar 

  29. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Rat. Mech. Anal. 16, 51–78 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  30. Müller, I.: Thermodynamics. Pitman, London (1985)

    MATH  Google Scholar 

  31. Pastrone, F.: Waves in solids with vectorial microstructure. Proc. Estonian Acad. Sci. Phys. Math. 52, 21–29 (2003)

    MATH  MathSciNet  Google Scholar 

  32. Pastrone, F.: Nonlinearity and complexity in elastic wave motion. In: Delsanto, P.-P. (ed.) Universality of Nonclassical Nonlinearity: Application to Non-Destructive Evaluation and Ultrasonics, pp. 15–26. Springer, New York (2007)

    Google Scholar 

  33. Poisson, S.D.: Mémoire sur les équations générales de l’equilibre et du mouvement des corps élastiques et des fluides. J. École Poly. 13(20), 1–174 (1829)

    Google Scholar 

  34. Rayleigh, L.: On progressive waves. Proc. London Math. Soc. 17, 21–26 (1887)

    Google Scholar 

  35. Salupere, A., Engelbrecht, J., Maugin, G.A.: Solitonic structures in KdV-based higher-order systems. Wave Motion 34, 51–61 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  36. Salupere, A.: The pseudospectral method and discrete spectral analysis. In: Quak, E., Soomere, T. (eds.) Applied Wave Mathematics, pp. 301–333. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  37. Taniuti, T., Nishihara, K.: Nonlinear Waves. World Scientific, Singapore (1983) (in Japanese 1977)

    MATH  Google Scholar 

  38. Truesdell, C.A., Toupin, R.: The classical field theories. In: Flugge’s Handbuch der Physik III/1, pp. 226–793. Springer, Berlin (1960)

    Google Scholar 

  39. Truesdell, C.A., Noll, W.: The nonlinear field theories. In: Flugge’s Handbuch der Physik III/3, pp. 1–602. Springer, Berlin (1965)

    Google Scholar 

  40. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

  41. Yerofeyev, V.I., Kazhayev, V.V., Semerikova, N.P.: Waves in Rods. Dispersion, Dissipation, Nonlinearity. Physmatlit, Moscow (2002) (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jüri Engelbrecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Engelbrecht, J. (2009). Deformation Waves in Solids. In: Quak, E., Soomere, T. (eds) Applied Wave Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00585-5_3

Download citation

Publish with us

Policies and ethics