Skip to main content

Towards a Description of Twist Waves in Mesoscopic Continuum Physics

  • Chapter
  • First Online:
Applied Wave Mathematics
  • 1838 Accesses

Abstract

An introduction to Mesoscopic Continuum Physics is given with a focus on liquid crystals. Mesoscopic Continuum Physics introduces variables describing the microstructure – like orientation of crystals – into the domain of the fields, thus treating them equivalently to space. The theory of Mesoscopic Continuum Physics has been reformulated, resulting in more compact equations. In this formulation the balance of spin shows up naturally as component equations of the balance of momentum. This is an advantage over the standard formulation, in which it seems to be postulated separately. Starting from this, a wave equation for twist waves has been derived on the mesoscopic space. Twist waves are one of the fundamental modes of orientation waves in liquid crystals. A short repetition of twist waves of liquid crystals in the Ericksen-Leslie theory is given and compared to a description using the mesoscopic theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, G., Hunter, J.K.: Orientation Waves in a Director Field With Rotational Inertia. arXiv math/0609189 (2007)

  2. Blenk, S., Ehrentraut, H., Muschik, W.: Orientation balances for liquid crystals and their representation by alignment tensors. Mol. Cryst. Liqu. Cryst. 204, 133–141 (1991)

    Article  Google Scholar 

  3. Blenk, S., Ehrentraut, H., Muschik, W.: Statistical foundation of macroscopic balances for liquid crystals in alignment tensor formulation. Physica A 174, 119–138 (1991)

    Article  MathSciNet  Google Scholar 

  4. Blenk, S., Ehrentraut, H., Muschik, W.: Macroscopic constitutive equations for liquid crystals induced by their mesoscopic orientation distribution. Int. J. Eng. Sci. 30(9), 1127–1143 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blenk, S., Muschik, W.: Orientational balances for nematic liquid crystals. J. Non-Equilib. Thermodyn. 16, 67–87 (1991)

    Article  MATH  Google Scholar 

  6. Blenk, S., Muschik, W.: Mesoscopic concepts for constitutive equations of nematic liquid crystals in alignment tensor formulation. ZAMM 73(4–5), T331–T333 (1993)

    MATH  Google Scholar 

  7. Ehrentraut, H., Muschik, W.: On symmetric irreducible tensors in d-dimensions. ARI 51, 149–159 (1998)

    Article  Google Scholar 

  8. Ehrentraut, H., Muschik, W., Papenfuss, C.: Concepts of Continuum Thermodynamics - 5 Lectures on Fundamentals, Methods and Examples. Sekcja Poligrafi Politechniki Swietokrzyskiej, Kielce (1997)

    Google Scholar 

  9. Ericksen, J.L.: Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 23–34 (1961)

    Article  MathSciNet  Google Scholar 

  10. Ericksen, J.L.: Twisting of liquid crystals. J. Fluid Mech. 27, 59–64 (1967)

    Article  Google Scholar 

  11. Ericksen, J.L.: Equilibrium theory of liquid crystals. Adv. Liqu. Cryst. 2, 233–298 (1976)

    Google Scholar 

  12. Ericksen, S.L.: Twist waves in liquid crystals. Quart. J. Mech. Appl. Math. XXI (1968)

    Google Scholar 

  13. Frank, F.C.: On the theory of liquid crystals. Discuss. Faraday Soc. 25, 19–28 (1958). DOI 10.1039/DF9582500019

    Article  Google Scholar 

  14. Guozhen, Z.: Experiments on director waves in nematic liquid crystals. Phys. Rev. Lett. 49(18), 1332–1335 (1982). DOI 10.1103/PhysRevLett.49.1332

    Article  Google Scholar 

  15. Hess, S.: Irreversible thermodynamics of nonequilibrium alignment phenomena in molecular liquids and in liquid crystals. Z. Naturforsch. 30a, 728–733 (1975)

    Google Scholar 

  16. Hess, S.: Irreversible thermodynamics of nonequilibrium alignment phenomena in molecular liquids and in liquid crystals II. Z. Naturforsch. 30a, 1224–1232 (1975)

    Google Scholar 

  17. Hess, S.: Pre- and post-transitional behaviour of the flow alignment and flow-induced phase transition in liquid crystals. Z. Naturforsch. 31a, 1507–1513 (1976)

    Google Scholar 

  18. Leslie, F.M.: Some constitutive equations for anisotropic fluids. Quart. J. Mech. Appl. Math. 19, 357–370 (1966). DOI 10.1093/qjmam/19.3.357

    Article  MATH  MathSciNet  Google Scholar 

  19. Leslie, F.M.: Some constitutive equations for liquid crystals. Arch. Rat. Mech. Anal. 28, 265–283 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  20. Leslie, F.M.: Theory of flow phenomena in liquid crystals. Adv. Liqu. Cryst. 4, 1–81 (1979)

    Google Scholar 

  21. Lhuillier, D., Rey, A.D.: Liquid-crystalline nematic polymers revisited. J. Non-Newtonian Fluid Mech. 120(1–3), 85–92 (2004). DOI 10.1016/j.jnnfm.2004.01.016.

    Article  MATH  Google Scholar 

  22. Longa, L., Monselesan, D., Trebin, H.R.: An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals. Liq. Crys. 2(6), 769–796 (1987)

    Article  Google Scholar 

  23. Maier, W., Saupe, A.: Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil 1. Z. Naturforsch. 14a, 882–889 (1959)

    Google Scholar 

  24. Maier, W., Saupe, A.: Eine einfache molekular-statistische Theorie der nematischen kristallinflüssigen Phase. Teil 2. Z. Naturforsch. 15a, 287–292 (1960)

    Google Scholar 

  25. Muschik, W., Ehrentraut, H., Blenk, S.: Ericksen-Leslie liquid crystal theory revisited from a mesoscopic point of view. J. Non-Equilib. Thermodyn. 20, 92–101 (1995)

    Article  MATH  Google Scholar 

  26. Muschik, W., Papenfuss, C., Ehrentraut, H.: Mesoscopic theory of liquid crystals. J. Non-Equilib. Thermodyn. pp. 75–106 (2004)

    Google Scholar 

  27. Muschik, W., Papenfuss, C., Ehrentraut, H.: Sketch of the mesoscopic description of nematic liquid crystals. J. Non-Newtonian Fluid Mech. 119(1–3), 91–104 (2004). DOI 10.1016/j.jnnfm.2004.01.011.

    Article  MATH  Google Scholar 

  28. Papenfuß, C.: Thermodynamic constitutive theory. Habilitation, TU Berlin (2005)

    Google Scholar 

  29. Pardowitz, I., Hess, S.: On the theory of irreversible processes in molecular liquids and liquid crystals, nonequilibrium phenomena assosiated with the second and fourth rank alignment-tensors. Physica 100A, 540–562 (1980)

    Google Scholar 

  30. Shahinpoor, M.: On the stress tensor in nematic liquid crystals. Rheol. Acta 15, 99–103 (1976). DOI 10.1007/BF01517500

    Article  MATH  Google Scholar 

  31. Sonnet, A.M., Maffetone, P.L., Virga, E.G.: Continuum theory for nematic liquid crystals with tensorial order. J. Non-Newtonian Fluid Mech. 119(1–3), 51–59 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Herrmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herrmann, H. (2009). Towards a Description of Twist Waves in Mesoscopic Continuum Physics. In: Quak, E., Soomere, T. (eds) Applied Wave Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00585-5_8

Download citation

Publish with us

Policies and ethics