Abstract
We propose in this paper a unique method to separate sources that may have different statistical properties, in the case of FIR convolutive mixtures. No constraint is necessary on the source statistics (i.i.d variables, Gaussian sources or temporally correlated sources..), nor on the number of each type of sources. On the contrary of previous works, no assumption of overdetermined mixtures is used. It relies on joint block-diagonalization of correlation matrices of some appropriate variables called differential complex signals, which are introduced in the paper.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Comon, P.: Contrasts for multichannel blind deconvolution. IEEE Signal Processing Letters 3(7), 209–211 (1996)
Simon, C., Loubaton, P., Jutten, C.: Separation of a class of convolutive mixtures: a contrast function approach. Signal Processing 81, 883–887 (2001)
Thomas, J., Deville, Y., Hossseini, S.: Time –Domain Fast Fixed-Point Algorithms for Convolutive ICA. IEEE Signal Processing Letters 13(4), 228–231 (2006)
Tugnait, J.K.: Identification and deconvolution of multichannel linear non-Gaussian processes using HOS and inverse filter criteria. IEEE T. SP 45(3), 658–672
Ghorokhov, A., Loubaton, P.: Subspace based techniques for second order blind separation of convolutive mixtures with temporally correlated sources. IEEE Trans. Circuit Syst. 44(9), 813–820 (1997)
Bousbiah, H., Belouchrani, A., Abed-Meraim, K.: Jacobi-like algorithm for blind signal separation of convolutive mixtures. Electronic Letters 37, 1049–1050 (2001)
Févotte, C., Doncarli, C.: A unified presentation of blind source separation methods for convolutive mixtures using block-diagonalization. In: ICA 2003, Nara, Japan (2003)
Ghennioui, H., Fadaili, E., Thirion, N., Adib, A., Moreau, E.: A Nonunitary Joint Block Diagonalization Algorithm for Blind Separation of Convolutive Mixtures of Sources. IEEE Signal Processing Letters 14(11) (November 2007)
Deville, Y., Benali, M., Abrad, F.: Differential source separation for underdetermined instantaneous or convolutive mixtures. Signal Processing 84(10)
Choi, Cichocki, A., Deville, Y.: Differential decorrelation for nonstationary source separation. In: ICA 2001, Helsinki (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Servière, C. (2009). Separation of Convolutive Mixtures with Hybrid Sources. In: Adali, T., Jutten, C., Romano, J.M.T., Barros, A.K. (eds) Independent Component Analysis and Signal Separation. ICA 2009. Lecture Notes in Computer Science, vol 5441. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00599-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-00599-2_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00598-5
Online ISBN: 978-3-642-00599-2
eBook Packages: Computer ScienceComputer Science (R0)