Skip to main content

Soft Dimension Reduction for ICA by Joint Diagonalization on the Stiefel Manifold

  • Conference paper
Independent Component Analysis and Signal Separation (ICA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5441))

Abstract

Joint diagonalization for ICA is often performed on the orthogonal group after a pre-whitening step. Here we assume that we only want to extract a few sources after pre-whitening, and hence work on the Stiefel manifold of p-frames in ℝn. The resulting method does not only use second-order statistics to estimate the dimension reduction and is therefore denoted as soft dimension reduction. We employ a trust-region method for minimizing the cost function on the Stiefel manifold. Applications to a toy example and functional MRI data show a higher numerical efficiency, especially when p is much smaller than n, and more robust performance in the presence of strong noise than methods based on pre-whitening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Theis, F., Inouye, Y.: On the use of joint diagonalization in blind signal processing. In: Proc. ISCAS 2006, Kos, Greece (2006)

    Google Scholar 

  2. Yeredor, A.: Non-orthogonal joint diagonalization in the leastsquares sense with application in blind source separation. IEEE Trans. Signal Processing 50(7), 1545–1553 (2002)

    Article  MathSciNet  Google Scholar 

  3. Ziehe, A., Laskov, P., Mueller, K.R., Nolte, G.: A linear least-squares algorithm for joint diagonalization. In: Proc. of ICA 2003, Nara, Japan, pp. 469–474 (2003)

    Google Scholar 

  4. Pham, D.: Joint approximate diagonalization of positive definite matrices. SIAM Journal on Matrix Anal. and Appl. 22(4), 1136–1152 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Absil, P.A., Gallivan, K.A.: Joint diagonalization on the oblique manifold for independent component analysis. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 5, pp. V–945–V–948 (2006)

    Google Scholar 

  6. Blanchard, G., Kawanabe, M., Sugiyama, M., Spokoiny, V., Müller, K.: In search of non-gaussian components of a high-dimensional distribution. Journal of Machine Learning Research 7, 247–282 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Kawanabe, M., Theis, F.: Joint low-rank approximation for extracting non-gaussian subspaces. Signal Processing (2007)

    Google Scholar 

  8. Cardoso, J.F.: High-order constrasts for independent component analysis. Neural Computation 11(1), 157–192 (1999)

    Article  Google Scholar 

  9. Belouchrani, A., Abed-Meraim, K., Cardoso, J.F., Moulines, E.: A blind source separation technique using secton-order statistics. IEEE Trans. Signal Process. 45(2), 434–444 (1997)

    Article  Google Scholar 

  10. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    Book  MATH  Google Scholar 

  12. Celledoni, E., Fiori, S.: Descent methods for optimization on homogeneous manifolds. Journal of Mathematics and Computers in Simulation 79(4), 1298–1323 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. MPS/SIAM Series on Optimization. Society for Industrial and Applied Mathematics. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  14. Absil, P.A., Baker, C.G., Gallivan, K.A.: Trust-region methods on Riemannian manifolds. Found. Comput. Math. 7(3), 303–330 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Baker, C.G., Absil, P.A., Gallivan, K.A.: An implicit trust-region method on Riemannian manifolds. IMA Journal of Numerical Analysis (to appear, 2008)

    Google Scholar 

  16. Amari, S., Cichocki, A., Yang, H.: A new learning algorithm for blind signal separation. Advances in Neural Information Processing Systems 8, 757–763 (1996)

    Google Scholar 

  17. Keck, I., Theis, F., Gruber, P., Lang, E., Specht, K., Fink, G., Tomé, A., Puntonet, C.: Automated clustering of ICA results for fMRI data analysis. In: Proc. CIMED 2005, Lisbon, Portugal, pp. 211–216 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Theis, F.J., Cason, T.P., Absil, P.A. (2009). Soft Dimension Reduction for ICA by Joint Diagonalization on the Stiefel Manifold. In: Adali, T., Jutten, C., Romano, J.M.T., Barros, A.K. (eds) Independent Component Analysis and Signal Separation. ICA 2009. Lecture Notes in Computer Science, vol 5441. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00599-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00599-2_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00598-5

  • Online ISBN: 978-3-642-00599-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics