Skip to main content

Computation of Discrete Abstractions of Arbitrary Memory Span for Nonlinear Sampled Systems

  • Conference paper
Hybrid Systems: Computation and Control (HSCC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5469))

Included in the following conference series:

Abstract

In this paper, we present a new method for computing discrete abstractions of arbitrary memory span for nonlinear sampled systems with quantized output. In our method, abstractions are represented by collections of conservative approximations of reachable sets by polyhedra, which in turn are represented by collections of half-spaces. Important features of our approach are that half-spaces are shared among polyhedra, and that the determination of each half-space requires the solution of a single initial value problem in an ordinary differential equation over a single sampling interval only. Apart from these numerical integrations, the only nontrivial operation to be performed repeatedly is to decide whether a given polyhedron is empty. In particular, in contrast to previous approaches, there are no intermediate bloating steps, and convex hulls are never computed. Our method heavily relies on convexity of reachable sets and applies to any sufficiently smooth system if either the sampling period, or the system of level sets of the quantizer can be chosen freely. In particular, it is not required that the system to be abstracted have any stability properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Willems, J.C.: Models for dynamics. In: Dynam. Report. Ser. Dynam. Systems Appl., vol. 2, pp. 171–269. Wiley, Chichester (1989)

    Google Scholar 

  2. Willems, J.C.: Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Automat. Control 36(3), 259–294 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and fault-tolerant control. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  4. Tomlin, C.J., Mitchell, I., Bayen, A.M., Oishi, M.: Computational techniques for the verification of hybrid systems. Proc. IEEE 91(7), 986–1001 (2003)

    Article  Google Scholar 

  5. Koutsoukos, X.D., Antsaklis, P.J., Stiver, J.A., Lemmon, M.D.: Supervisory control of hybrid systems. Proc. IEEE 88(7), 1026–1049 (2000)

    Article  Google Scholar 

  6. Moor, T., Raisch, J.: Supervisory control of hybrid systems within a behavioural framework. Systems Control Lett. 38(3), 157–166 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Moor, T., Davoren, J.M., Anderson, B.D.O.: Robust hybrid control from a behavioural perspective. In: Proc. 41th IEEE Conference on Decision and Control, Las Vegas, U.S.A., 2002, pp. 1169–1174. IEEE, New York (2002)

    Chapter  Google Scholar 

  8. Grüne, L., Junge, O.: Approximately optimal nonlinear stabilization with preservation of the Lyapunov function property. In: Proc. 46th IEEE Conference on Decision and Control, New Orleans, Louisiana, U.S.A., 2007, pp. 702–707. IEEE, New York (2007)

    Google Scholar 

  9. Ramadge, P.J., Wonham, W.M.: Modular feedback logic for discrete event systems. SIAM J. Control Optim. 25(5), 1202–1218 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems. Proc. IEEE 77(1), 81–98 (1989)

    Article  MATH  Google Scholar 

  11. Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and applications. Discrete Appl. Math. 42(2-3), 177–201 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 202–214. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  13. Moor, T., Raisch, J.: Abstraction based supervisory controller synthesis for high order monotone continuous systems. In: Engell, S., Frehse, G., Schnieder, E. (eds.) Modelling, Analysis, and Design of Hybrid Systems. Lect. Notes Control Inform. Sciences, vol. 279, pp. 247–265. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Junge, O.: Rigorous discretization of subdivision techniques. In: International Conference on Differential Equations, Berlin, 1999, vol. 1, 2, pp. 916–918. World Sci. Publ., River Edge (2000)

    Google Scholar 

  15. Puri, A., Varaiya, P., Borkar, V.: ε-approximation of differential inclusions. In: Proceedings of the 34th IEEE Conference on Decision and Control, New Orleans, LA, U.S.A., December 13-15, 1995, vol. 3, pp. 2892–2897. IEEE, Los Alamitos (1995)

    Google Scholar 

  16. Chutinan, A., Krogh, B.H.: Computational techniques for hybrid system verification. IEEE Trans. Automat. Control 48(1), 64–75 (2003)

    Article  MathSciNet  Google Scholar 

  17. Geist, S., Reißig, G., Raisch, J.: An approach to the computation of reachable sets of nonlinear dynamic systems – an important step in generating discrete abstractions of continuous systems. In: Domek, S., Kaszyński, R. (eds.) Proc. 11th IEEE Int. Conf. Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, August 29-September 1, pp. 101–106 (2005), www.reiszig.de/gunther/pubs/i05MMAR.abs.html

  18. Grüne, L., Müller, F.: Set oriented optimal control using past information. In: Proc. 2008 Math. Th. of Networks and Systems (MTNS), Blacksburg, Virginia, U.S.A, July 28 - August 1 (2008)

    Google Scholar 

  19. Tiwari, A.: Abstractions for hybrid systems. Form. Methods Syst. Des. 32(1), 57–83 (2008); Proc. 7th Intl. Workshop Hybrid Systems: Computation and Control (HSCC), Philadelphia, U.S.A., March 25-27 (2004)

    Google Scholar 

  20. Kloetzer, M., Belta, C.: A fully automated framework for control of linear systems from temporal logic specifications. IEEE Trans. Automat. Control 53(1), 287–297 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tabuada, P.: An approximate simulation approach to symbolic control. IEEE Trans. Automat. Control 53(6), 1406–1418 (2008)

    Article  MathSciNet  Google Scholar 

  22. Reißig, G.: Convexity of reachable sets of nonlinear ordinary differential equations. Automat. Remote Control 68(9), 1527–1543 (2007); (Russian transl. in Avtomat. i Telemekh. (9), 64–78 (2007), www.reiszig.de/gunther/pubs/i07Convex.abs.html

    Article  MATH  Google Scholar 

  23. Reißig, G.: Convexity of reachable sets of nonlinear discrete-time systems. In: Kaszyński, R. (ed.) Proc. 13th IEEE Int. Conf. Methods and Models in Automation and Robotics (MMAR), Szczecin, Poland, August 27-30, pp. 199–204 (2007), www.reiszig.de/gunther/i07MMAR.abs.html

  24. Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra. Pure and Appl. Math., vol. 60. Academic Press, London (1974)

    MATH  Google Scholar 

  25. Hartman, P.: Ordinary differential equations. Classics in Applied Mathematics, vol. 38. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  26. Halin, R.: Graphentheorie, 2nd edn. Wiss. Buchgesellschaft, Darmstadt (1989)

    MATH  Google Scholar 

  27. Rockafellar, R.T.: Convex analysis. Princeton Mathematical Series, vol. 28. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  28. Reißig, G.: Local fill reduction techniques for sparse symmetric linear systems. Electr. Eng. 89(8), 639–652 (2007), www.reiszig.de/gunther/pubs/i06Fill.abs.html

    Article  Google Scholar 

  29. Reißig, G.: Fill reduction techniques for circuit simulation. Electr. Eng. 90(2), 143–146 (2007), www.reiszig.de/gunther/pubs/i07Fill.abs.html

    Article  Google Scholar 

  30. Zampieri, G., Gorni, G.: Local homeo- and diffeomorphisms: invertibility and convex image. Bull. Austral. Math. Soc. 49(3), 377–398 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Polyak, B.T.: Convexity of nonlinear image of a small ball with applications to optimization. Set-Valued Anal. 9(1-2), 159–168 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bobylev, N.A., Emelýanov, S.V., Korovin, S.K.: Convexity of images of convex sets under smooth maps. Nelineinaya Dinamika i Upravlenie (2), 23–32 (2002); Russian. Engl. transl. in Comput. Math. Model. 15(3), 213–222

    Google Scholar 

  33. Wolfram, S.: The Mathematica\(\sp \circledR\) book, 5th edn. Wolfram Media, Inc., Champaign (2003)

    Google Scholar 

  34. von Lossow, M.: A min-max version of Dijkstra’s algorithm with application to perturbed optimal control problems. In: Proceedings in Applied Mathematics and Mechanics ICIAM 2007/GAMM 2007, Zürich, Schweiz, vol. 7 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reißig, G. (2009). Computation of Discrete Abstractions of Arbitrary Memory Span for Nonlinear Sampled Systems. In: Majumdar, R., Tabuada, P. (eds) Hybrid Systems: Computation and Control. HSCC 2009. Lecture Notes in Computer Science, vol 5469. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00602-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00602-9_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00601-2

  • Online ISBN: 978-3-642-00602-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics