Abstract
A system for automatically classifying the trajectory of a moving object in a scene as usual or suspicious is presented. The system uses an unsupervised neural network (Self Organising Feature Map) fully implemented on a reconfigurable hardware architecture (Field Programmable Gate Array) to cluster trajectories acquired over a period, in order to detect novel ones. First order motion information, including first order moving average smoothing, is generated from the 2D image coordinates (trajectories). The classification is dynamic and achieved in real-time. The dynamic classifier is achieved using a SOFM and a probabilistic model. Experimental results show less than 15% classification error, showing the robustness of our approach over others in literature and the speed-up over the use of conventional microprocessor as compared to the use of an off-the-shelf FPGA prototyping board.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hampapur, A., Brown, L., Connell, J., Ekin, A., Haas, N., Lu, M., Merkl, H., Pankanti, S.: Smart video surveillance: exploring the concept of multiscale spatiotemporal tracking. IEEE Signal Processing Magazine 22(2), 38–51 (2005)
Jiang, F., Wu, Y., Katsaggelos, K.A.: Abnormal Event Detection From Surveillance Video By Dynamic Hierarchical Clustering. In: Proc. IEEE Int’l Conf. on Image Processing (ICIP 2007), San Antonio, TX (September 2007)
Bashir, F., Khokhar, A., Schonfeld, D.: Object Trajectory-Based Motion Modeling and Classification using Hidden Markov Models. IEEE Transactions on Image Processing 16(7), 1912–1919 (2007)
Jung, C., Jacques, J., Soldera, J., Musse, S.: Detection of Unusual Motion Using Computer Vision. In: Jung, C., Jacques, J., Soldera, J., Musse, S. (eds.) XIX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2006), pp. 349–356 (2006)
Jiang, F., Wu, Y., Katsaggelos, A.K.: Abnormal event detection based on trajectory clustering by 2-depth greedy search. In: IEEE International Conference on Speech and Signal Processing, 2008. ICASSP (2008)
Dickinson, P., Hunter, A.: Using Inactivity to Detect Unusual Behaviour. In: Proc. of IEEE Workshop on Motion and Video Computing, Colorado (January 2008)
Humphreys, J., Hunter, A.: Multiple object tracking using a neural cost function. In: Image and Vision Computing (June 2008)
Owens, J., Hunter, A., Fletcher, E.: Novelty Detection in Video Surveillance Using Hierarchical Neural Networks. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, p. 1249. Springer, Heidelberg (2002)
Owens, J., Hunter, A.: Application of the Self-Organizing Map to Trajectory Classification. In: IEEE Computer Society Proceedings of the Third IEEE international Workshop on Visual Surveillance (Vs 2000), July 1 (2000)
Johnson, N., Hogg, D.: Learning the distribution of object trajectories for event recognition. In: Proceedings of the 6th British Conference on Machine Vision, UK, vol. 2, pp. 583–592 (1995)
Piciarelli, C., Foresti, G.L., Snidara, L.: Trajectory clustering and its applications for video surveillance. In: IEEE Conference on AVSS (2005)
Naftel, A., Anwar, F.B.: Visual Recognition of Manual Tasks Using Object Motion Trajectories. In: Proceedings of the IEEE international Conference on AVSS (2006)
Yue Zhou, Y., Yan, S., Huang, T.S.: Detecting Anomaly in Videos from Trajectory Similarity Analysis. In: IEEE International Conference on Multimedia and Expo (2007)
Duque, D., dos Santos, H.D., Cortez, P.: Prediction of abnormal behaviors for intelligent video surveillance systems. In: Proceedings of IEEE Symposium on computational intelligence and data mining, USA (2007)
Stauffer, C., Grimson, W.E.: Learning Patterns of Activity Using Real-Time Tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 747–757 (2000)
Hervieu, A., Bouthemy, P., Le Cadre, J.-P.: A statistical video content recognition method using invariant features on object trajectories. IEEE Trans. on CSVT (Special Issue on ”Event Analysis in Videos”) (2008)
Piciarelli, C., Micheloni, C., Foresti, G.L.: Trajectory-based anomalous event detection. IEEE Transactions on Circuits and Systems for Video Technology (2008)
Jung, C.R., Hennemann, L., Musse, S.R.: Event Detection Using Trajectory Clustering and 4D Histograms. In: Special issue on Event Analysis in Videos in IEEE Transactions on Circuits and Systems for Video Technology (2008)
Appiah, K., Hunter, A.: A single-chip FPGA implementation of real-time adaptive background model. In: IEEE International Conference on Field-Programmable Technology, pp. 95–102 (December 2005)
Meng, H., Freeman, M., Pears, N., Bailey, C.: Real-time human action recognition on an embedded, reconfigurable video processing architecture. Special Issue of Journal on Real-Time Image Processing 3(3), 163–176 (2008)
Chalimbaud, P., Berry, F.: Embedded Active Vision System Based on an FPGA Architecture. EURASIP Journal on Embedded Systems (2007)
Yamaoka, K., Morimoto, T., Adachi, H., Koide, T., Mattausch, H.J.: Image segmentation and pattern matching based FPGA/ASIC implementation architecture of real-time object tracking. In: Proceedings of the 2006 Conference on Asia South Pacific Design Automation, Yokohama, Japan, January 24-27 (2006)
Tomasi, M., Díaz, J., Ros, E.: Real Time Architectures for Moving-Objects Tracking. In: Diniz, P.C., Marques, E., Bertels, K., Fernandes, M.M., Cardoso, J.M.P. (eds.) ARCS 2007. LNCS, vol. 4419, pp. 365–372. Springer, Heidelberg (2007)
ABORAT Project: Eastern Kentucky University -College of Justice and Safety (2006), www.jsc.eku.edu/projAborat.asp
Han, C., Lin, C., Ho, G., Fan, K.: Abnormal Event Detection Using Trajectory Features. In: International Computer Symposium, Taiwan (December 2006)
Kumar, S.: Neural Networks a classroom approach. McGraw-Hill, New York (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Appiah, K., Hunter, A., Kluge, T., Aiken, P., Dickinson, P. (2009). FPGA-Based Anomalous Trajectory Detection Using SOFM. In: Becker, J., Woods, R., Athanas, P., Morgan, F. (eds) Reconfigurable Computing: Architectures, Tools and Applications. ARC 2009. Lecture Notes in Computer Science, vol 5453. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00641-8_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-00641-8_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00640-1
Online ISBN: 978-3-642-00641-8
eBook Packages: Computer ScienceComputer Science (R0)