Lecture Notes in Computer Science 5363 Commenced Publication in 1973 Founding and Former Series Editors: Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen ### **Editorial Board** **David Hutchison** Lancaster University, UK Takeo Kanade Carnegie Mellon University, Pittsburgh, PA, USA Josef Kittler University of Surrey, Guildford, UK Jon M. Kleinberg Cornell University, Ithaca, NY, USA Alfred Kobsa University of California, Irvine, CA, USA Friedemann Mattern ETH Zurich, Switzerland John C. Mitchell Stanford University, CA, USA Moni Naor Weizmann Institute of Science, Rehovot, Israel Oscar Nierstrasz University of Bern, Switzerland C. Pandu Rangan Indian Institute of Technology, Madras, India Bernhard Steffen University of Dortmund, Germany Madhu Sudan Massachusetts Institute of Technology, MA, USA Demetri Terzopoulos University of California, Los Angeles, CA, USA Doug Tygar University of California, Berkeley, CA, USA Gerhard Weikum Max-Planck Institute of Computer Science, Saarbruecken, Germany Giovanni Sommaruga (Ed.) # Formal Theories of Information From Shannon to Semantic Information Theory and General Concepts of Information ### Volume Editor Giovanni Sommaruga University of Fribourg CH-1700 Fribourg, Switzerland E-mail: giovanni.sommaruga@unifr.ch Library of Congress Control Number: Applied for CR Subject Classification (1998): E.4, H.1.1, F.4 LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues ISSN 0302-9743 ISBN-10 3-642-00658-2 Springer Berlin Heidelberg New York ISBN-13 978-3-642-00658-6 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. springer.com © Springer-Verlag Berlin Heidelberg 2009 Printed in Germany Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India Printed on acid-free paper SPIN: 12600021 06/3180 543210 ## Preface It is commonly assumed that computers process information. But what is information? In a technical, important, but nevertheless rather narrow sense, Shannon's information theory gives a first answer to this question. This theory focuses on measuring the information content of a message. Essentially this measure is the reduction of the uncertainty obtained by receiving a message. The uncertainty of a situation of ignorance in turn is measured by entropy. This theory has had an immense impact on the technology of information storage, data compression, information transmission and coding and still is a very active domain of research. Shannon's theory has also attracted much interest in a more philosophic look at information, although it was readily remarked that it is only a "syntactic" theory of information and neglects "semantic" issues. Several attempts have been made in philosophy to give information theory a semantic flavor, but still mostly based on or at least linked to Shannon's theory. Approaches to semantic information theory also very often make use of formal logic. Thereby, information is linked to reasoning, deduction and inference, as well as to decision making. Further, entropy and related measure were soon found to have important connotations with regard to statistical inference. Surely, statistical data and observation represent information, information about unknown, hidden parameters. Thus a whole branch of statistics developed around concepts of Shannon's information theory or derived from them. Also some proper measurements appropriate for statistics, like Fisher's information, were proposed. Algorithmic information theory introduced by Kolmogorov, Solomonoff and Chaitin provides a new look at the concept of information. It is again basically a theory of measuring information content. Here the information content of an information object, for instance, a binary string, is measured by the length of the shortest program which computes this object. It is based on Turing machines. A main result of this approach to information is the clarification of the concept of randomness and probability. Therefore it is not too surprising that algorithmic information theory reproduces Shannon's results although in a rather different context. Not too long ago it was noted that information is related to questions. Information represents answers to such questions. Or it was remarked that pieces of information shed light on a given context, and that this information might possibly also be transported through channels to other contexts. The problems of questions and of information related to questions were considered by Groenendijk and Stockhoff. Further, the flow of information between different contexts was studied by Barwise and Seligman. From quite a different point of view, similar issues were captured by the Fribourg school which introduces the concept of information algebras. Pieces of information come from different sources, concern different questions, can be combined or aggregated and focused on the questions of interest. These algebraic structures also provide a rigorous foundation for a theory of uncertain information based on probability theory. Furthermore they offer sufficient conditions for efficient generic methods of inference covering diverse domains such as relational databases, probability networks, logic systems, constraint programming, discrete transforms and many more. Under the title "Information and Knowledge," research groups of the Computer Science departments of the universities of Berne, Fribourg and Neuchtel collaborated over several years on issues of logic, probability, inference and deduction. Given the different approaches to the concept of information and its basic nature, one of the traditional Muenchenwiler seminars in May 2006 was devoted to an exchange of views between experts from the different schools mentioned above. The goal was to examine whether there is some common ground between these different formal theories. The contributions of the invited participants (with the exception of Robert van Roij, who was afterwards invited to contribute) are collected in this volume. The volume editor, Giovanni Sommaruga, discusses the question of whether there are one or several concepts of information as a first attempt to summarize the results of the seminar. It is up to the reader to continue in the direction of a possible unification of the different theories. As the organizer of the May 2006 Muenchenwiler seminar, I would like to thank the authors for their participation in the seminar, their contributions to this volume and the patience they had to exercise during the editing process. My sincere thank goes to the editor of this volume, Giovanni Sommaruga, for all the work this implied and especially for his effort to compare the different approaches to information in search of a common thread. Thanks to Cris Calude for establishing the contacts with Springer for the publication of the volume. I am grateful to Cesar Schneuwly for the final typesetting preparations. Finally I thank the Swiss National Foundation for supporting several research projects on the subject of "logic and probability" and "information and knowledge," as well as the Swiss Confederation which supported the collaboration project between the universities of Berne, Fribourg and Neuchtel under the title of "deduction and inference." The Muenchenwiler seminar of May 2006, as well as many others, and the present volume are fruits of this encouragement. Jürg Kohlas Department of Computer Science University of Fribourg (Switzerland) # **Table of Contents** | Introduction | 1 | |--|-----| | Philosophical Reflections | | | Philosophical Conceptions of Information | 13 | | The Syntactical Approach | | | Information Theory, Relative Entropy and Statistics | 54 | | Information: The Algorithmic Paradigm | 79 | | The Semantical Approach | | | Information Algebra Jürg Kohlas and Cesar Schneuwly | 95 | | Uncertain Information | 128 | | Comparing Questions and Answers: A Bit of Logic, a Bit of Language, and Some Bits of Information | 161 | | Channels: From Logic to Probability | 193 | | Beyond the Semantical Approach | | | Modeling Real Reasoning | 234 | | Philosophical Conclusions | | | One or Many Concepts of Information? | 253 | | Author Index | 269 |