Skip to main content

A Framework for Semi-automatic Data Integration

  • Conference paper
Enterprise Information Systems (ICEIS 2008)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 19))

Included in the following conference series:

  • 549 Accesses

Abstract

Recent studies on Business Intelligence highlights the need of on-time, trustable and sound data access systems. Moreover the application of these systems in a flexible and dynamic environment requires for an approach based on automatic procedures that can provide reliable results.

A crucial factor for any automatic data integration system is the matching process. Different categories of matching operators carry different semantics. For this reason combining them in a single algorithm is a non trivial process that have to take into account a variety of options.

This paper proposes a solution based on a categorization of matching operators that allow to group similar attributes on a semantic rich form. This way we define all the information need in order to create a mapping. Then Mapping Generation is activated only on those set of elements that can be queried without violating any integrity constraints on data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abiteboul, S., Duschka, O.M.: Complexity of answering queries using materialized views, pp. 254–263 (1998)

    Google Scholar 

  2. Braun, P., Lötzbeyer, H., Schätz, B., Slotosch, O.: Consistent integration of formal methods. In: Schwartzbach, M.I., Graf, S. (eds.) TACAS 2000. LNCS, vol. 1785, pp. 48–62. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Calvanese, D., Lenzerini, M., Nardi, D.: Description logics for conceptual data modeling. In: Logics for Databases and Information Systems, pp. 229–263 (1998)

    Google Scholar 

  4. Cui, Z., Damiani, E., Leida, M.: Benefits of ontologies in real time data access. In: Digital EcoSystems and Technologies Conference, 2007. DEST 2007. Inaugural IEEE-IES, February 21-23, 2007, pp. 392–397 (2007)

    Google Scholar 

  5. Duschka, O.M., Genesereth, M.R., Levy, A.Y.: Recursive query plans for data integration. Journal of Logic Programming 43(1), 49–73 (2000)

    Article  Google Scholar 

  6. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)

    Google Scholar 

  7. Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis, Foundations and Applications. LNCS, vol. 3626. Springer, Heidelberg (2005)

    Google Scholar 

  8. Grahne, G., Mendelzon, A.O.: Tableau techniques for querying information sources through global schemas. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 332–347. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  9. Hakimpour, F., Geppert, A.: Global schema generation using formal ontologies (2002)

    Google Scholar 

  10. Halevy, A.Y.: Answering queries using views: A survey. VLDB Journal: Very Large Data Bases 10(4), 270–294 (2001)

    Article  Google Scholar 

  11. Hammer, J., Garcia-Molina, H., Widom, J., Labio, W., Zhuge, Y.: The stanford data warehousing project. IEEE Quarterly Bulletin on Data Engineering; Special Issue on Materialized Views and Data Warehousing 18(2), 41–48 (1995)

    Google Scholar 

  12. Lenzerini, M.: Data integration: a theoretical perspective. In: PODS 2002: Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp. 233–246. ACM Press, New York (2002)

    Chapter  Google Scholar 

  13. Parent, C., Spaccapietra, S.: Issues and approaches of database integration. Commun. ACM 41(5), 166–178 (1998)

    Article  Google Scholar 

  14. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB Journal: Very Large Data Bases 10(4), 334–350 (2001)

    Article  Google Scholar 

  15. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ceravolo, P., Cui, Z., Damiani, E., Gusmini, A., Leida, M. (2009). A Framework for Semi-automatic Data Integration. In: Filipe, J., Cordeiro, J. (eds) Enterprise Information Systems. ICEIS 2008. Lecture Notes in Business Information Processing, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00670-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00670-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00669-2

  • Online ISBN: 978-3-642-00670-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics