Skip to main content

An Improved Algorithm for Mining Non-Redundant Interacting Feature Subsets

  • Conference paper
Advances in Data and Web Management (APWeb 2009, WAIM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5446))

  • 1301 Accesses

Abstract

The application of feature subsets with high order correlation in classification has demonstrates its power in a recent study, where non-redundant interacting feature subsets (NIFS) is defined based on multi-information. In this paper, we re-examine the problem of finding NIFSs. We further improve the upper bounds and lower bounds on the correlations, which can be used to significantly prune the search space. The experiments on real datasets demonstrate the efficiency and effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between sets of items in large databases. In: Buneman, P. (ed.) Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, DC, pp. 207–216. ACM Press, New York (1993)

    Chapter  Google Scholar 

  2. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large Databases. In: VLDB 1994, pp. 487–499 (1994)

    Google Scholar 

  3. Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: generalizing association rules to correlations. In: Proceedings of 1997 ACM-SIGMOD International Conference on Management of Data (SIGMOD 1997) (1997)

    Google Scholar 

  4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  5. Cover, T., Thomas, J.: Elements of Information Theory. Wiley Series in Telecommunications. Wiley Interscience, Hoboken (1991)

    Book  MATH  Google Scholar 

  6. Han, T.S.: Nonnegative entropy measures of multivariate symmetric correlations. Inform. Contr. 36, 133–156 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Heikinheimo, H., Hinkkanen, E., Mannila, H., Mielikainen, T., Seppanen, J.: Finding low-Entropy sets and trees from binary data. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2007)

    Google Scholar 

  8. Ke, Y., Cheng, J., Ng, W.: Mining Quantitative Correlated Patterns Using an Information-Theoretic Approach. In: Eliassi-Rad, T. (ed.) Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 227–236. ACM, Philadelphia (2006)

    Google Scholar 

  9. Knobbe, A., Ho, E.: Maximally informative k-itemsets and their efficient discovery. In: KDD 2006, pp. 237–244 (2006)

    Google Scholar 

  10. Omiecinski, E.R.: Alternative Interest Measures for Mining Associations in Databases. IEEE Transactions on Data Engineering 15(1), 57–69 (2003)

    Article  MathSciNet  Google Scholar 

  11. Pan, F., Roberts, A., McMillan, L., de Villena, F., Threadgill, D., Wang, W.: Sample selection for maximal diversity. In: Proceedings of the 5th IEEE International Conference on Data Mining (2007)

    Google Scholar 

  12. Pan, F., Wang, W., Tung, A.K.H., Yang, J.: Finding representative set from massive data. In: ICDM 2005, pp. 338–345 (2005)

    Google Scholar 

  13. Xiong, H., Tan, P., Kumar, V.: Hyperclique Pattern Discovery. Data Mining and Knowledge Discovery Journal 13(2), 219–242 (2006)

    Article  MathSciNet  Google Scholar 

  14. Yeung, R.W.: A first course in information theory. Springer, Heidelberg (2002)

    Book  Google Scholar 

  15. Zhang, X., Pan, F., Wang, W., Nobel, A.: Mining non-redundant high order correlation in binary data. In: Proceedings of the 34th International Conference on Very Large Data Bases, Vienna, Austria, Auckland, New Zealand (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sha, C., Gong, J., Zhou, A. (2009). An Improved Algorithm for Mining Non-Redundant Interacting Feature Subsets. In: Li, Q., Feng, L., Pei, J., Wang, S.X., Zhou, X., Zhu, QM. (eds) Advances in Data and Web Management. APWeb WAIM 2009 2009. Lecture Notes in Computer Science, vol 5446. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00672-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00672-2_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00671-5

  • Online ISBN: 978-3-642-00672-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics