Abstract
Large amount of uncertain data is inherent in many novel and important applications such as sensor data analysis and mobile data management. A probabilistic threshold range aggregate (PTRA) query retrieves summarized information about the uncertain objects satisfying a range query, with respect to a given probability threshold. This paper is the first one to address this important type of query. We develop a new index structure aU-tree and propose an exact querying algorithm based on aU-tree. For the pursue of efficiency, two techniques SingleSample and DoubleSample are developed. Both techniques provide approximate answers to a PTRA query with accuracy guarantee. Experimental study demonstrates the efficiency and effectiveness of our proposed methods.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Acharya, S., Poosala, V., Ramaswamy, S.: Selectivity estimation in spatial databases. In: SIGMOD 1999 (1999)
Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic databases. In: VLDB 2004 (2004)
Dalvi, N., Suciu, D.: Management of probabilistic data: foundations and challenges. In: PODS 2007 (2007)
Dey, D., Sarkar, S.: A probabilistic relational model and algebra. In: TODS 1996 (1996)
Kriegel, H.P., et al.: Probabilistic similarity join on uncertain data. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.) DASFAA 2006. LNCS, vol. 3882, pp. 295–309. Springer, Heidelberg (2006)
Antova, L., et al.: \(10^{10^6}\) worlds and beyond: Efficient representation and processing of incomplete information. In: ICDE 2007 (2007)
Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIGMOD 1984 (1984)
Hua, M., Pei, J., Lin, X., Zhang, W.: Efficiently answering probabilistic threshold top-k queries on uncertain data. In: ICDE 2008 (2008)
Kriegel, H.-P., Kunath, P., Renz, M.: Probabilistic nearest-neighbor query on uncertain objects. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 337–348. Springer, Heidelberg (2007)
Kriegel, H.P., Pfeifle, M.: Density-based clustering of uncertain data. In: KDD 2005 (2005)
Lee, S.K.: Imprecise and uncertain information in databases: an evidential approach. In: ICDE 1992 (1992)
Agrawal, P., Benjelloun, O., Das Sarma, A., Hayworth, C., Nabar, S., Sugihara, T., Widom, J.: Trio: A system for data, uncertainty, and lineage. In: VLDB 2006 (2006)
Papadias, D., Kalnis, P., Zhang, J., Tao, Y.: Efficient OLAP operations in spatial data warehouses. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, p. 443. Springer, Heidelberg (2001)
Pei, J., Hua, M., Tao, Y., Lin, X.: Query answering techniques on uncertain and probabilistic data. In: SIGMOD 2008 (2008)
Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic skyline on uncertain data. In: VLDB (2007)
Sarma, A.D., Benjelloun, O., Halevy, A., Widom, J.: Working models for uncertain data. In: ICDE 2005 (2005)
Sen, P., Deshpande, A.: Representing and querying correlated tuples in probabilistic databases. In: ICDE 2007 (2007)
Tao, Y., Cheng, R., Xiao, X., Ngai, W.K., Kao, B., Prabhakar, S.: Indexing multi-dimensional uncertain data with arbitrary probability density functions. In: VLDB, pp. 922–933 (2005)
Tao, Y., Papadias, D.: Range aggregate processing in spatial databases. ACM TODS 16(12), 1555–1570 (2004)
Zhang, W., Lin, X., Pei, J., Zhang, Y.: Managing uncertain data: Probabilistic approaches. In: WAIM 2008 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yang, S., Zhang, W., Zhang, Y., Lin, X. (2009). Probabilistic Threshold Range Aggregate Query Processing over Uncertain Data. In: Li, Q., Feng, L., Pei, J., Wang, S.X., Zhou, X., Zhu, QM. (eds) Advances in Data and Web Management. APWeb WAIM 2009 2009. Lecture Notes in Computer Science, vol 5446. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00672-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-00672-2_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00671-5
Online ISBN: 978-3-642-00672-2
eBook Packages: Computer ScienceComputer Science (R0)