Skip to main content

Graph Spectral Approach for Identifying Protein Domains

  • Conference paper
Bioinformatics and Computational Biology (BICoB 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5462))

Included in the following conference series:

  • 1189 Accesses

Abstract

Here we present a simple method based on graph spectral properties to automatically partition multi-domain proteins into individual domains. The identification of structural domains in proteins is based on the assumption that the interactions between the amino acids are higher within a domain than across the domains. These interactions and the topological details of protein structures can be effectively captured by the protein contact graph, constructed by considering each amino acid as a node with an edge drawn between two nodes if the C α atoms of the amino acids are within 7Å. Here we show that Newman’s community detection approach in social networks can be used to identify domains in protein structures. We have implemented this approach on protein contact networks and analyze the eigenvectors of the largest eigenvalue of modularity matrix, which is a modified form of the Adjacency matrix, using a quality function called “modularity” to identify optimal divisions of the network into domains. The proposed approach works even when the domains are formed with amino acids not occurring sequentially along the polypeptide chain and no a priori information regarding the number of nodes is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Janin, J., Wodak, S.J.: Structural domains in proteins and their role in the dynamics of protein function. Prog. Biophys. Mol. Biol. 42, 21–78 (1983)

    Article  CAS  PubMed  Google Scholar 

  2. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucleic Acids Research 28, 235–242 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Swindells, M.B.: A procedure for the automatic determination of hydrophobic cores in protein structures. Protein Sci. 4, 93–102 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Holm, L., Sander, C.: The FSSP database of structurally aligned protein fold families. Nucl. Acid Res. 22, 3600–3609 (1994)

    CAS  Google Scholar 

  5. Siddiqui, A.S., Barton, G.J.: Continous and dicontinous domains, an algorithm for the automatic generation of reliable protein domain definitions. Protein Sci. 4, 872–884 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xu, Y., Xu, D., Gabow, H.: Protein domain decomposition using a graph-theoretic approach. Bioinformatics 16, 1091–1104 (2000)

    Article  CAS  PubMed  Google Scholar 

  7. Ramesh, K., Sistla, B.K.V., Vishveshwara, S.: Identification of Domains and Domain Interface Residues in Multidomain Proteins From Graph Spectral Method. Structure, Function, and Bioinformatics 59, 616–626 (2005)

    Article  Google Scholar 

  8. Jones, S., Stewart, M., Michie, A., Swindells, M.B., Orengo, C., Thorton, J.M.: Domain assignment for protein structures using a consensus approach, characterization and analysis. Protein Science 7, 233–242 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Conte, L.L., Ailey, B., Hubbard, T.J.P., Brenner, S.E., Murzin, A.G., Chothia, C.: SCOP: a structural classification of protein database. Nucleic Acid Res. 28, 257–259 (2000)

    Article  PubMed  PubMed Central  Google Scholar 

  10. Veretnik, S., Bourne, P.E., Alexandrov, N.N., Shindyalov, I.N.: Toward consistent assignment of structural domains in proteins. J. Mol. Biol. 339, 647–678 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. 74 (2006), id. 036104

    Google Scholar 

  12. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA. 103, 8577–8582 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. 70 (2004), id. 066111

    Google Scholar 

  14. Holm, L., Sander, C.: Parser for protein folding units. Proteins 19, 256–268 (1994)

    Article  CAS  PubMed  Google Scholar 

  15. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)

    Google Scholar 

  16. Csardi, G., Nepusz, T.: The igraph software package for complex network research. InterJournal Complex Systems. 1695 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yalamanchili, H.K., Parekh, N. (2009). Graph Spectral Approach for Identifying Protein Domains. In: Rajasekaran, S. (eds) Bioinformatics and Computational Biology. BICoB 2009. Lecture Notes in Computer Science(), vol 5462. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00727-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00727-9_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00726-2

  • Online ISBN: 978-3-642-00727-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics