Abstract
In this paper, we present a new technique for Matsui’s algorithm 2 using multidimensional linear approximation. We show that the data complexity of the attack can be reduced significantly by our method even when the linear hull effect is present. We apply our method to the key recovery attack on 5-round Serpent and demonstrate that our attack is superior to previous attacks. We present evidence that it is theoretically possible to reduce the data complexity of the linear attack against 10 round Serpent by factor of 220 when multiple approximations are used.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anderson, R., Biham, E., Knudsen, L.: Serpent: A proposal for the advanced encryption standard. In: First Advanced Encryption Standard (AES) conference (1998)
Baignères, T., Junod, P., Vaudenay, S.: How Far Can We Go Beyond Linear Cryptanalysis? In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 432–450. Springer, Heidelberg (2004)
Biham, E., Dunkelman, O., Keller, N.: Linear cryptanalysis of reduced round Serpent. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 219–238. Springer, Heidelberg (2002)
Biryukov, A., De Cannière, C., Quisquater, M.: On multiple linear approximations. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer, Heidelberg (2004)
Collard, B., Standaert, F., Quisquater, J.: Improved and multiple linear cryptanalysis of reduced round Serpent. In: Pei, D., Yung, M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 47–61. Springer, Heidelberg (2008)
Collard, B., Standaert, F., Quisquater, J.: Experiments on the multiple linear cryptanalysis of reduced round serpent. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 382–397. Springer, Heidelberg (2008)
Collard, B., Standaert, F., Quisquater, J. (Accessed on 31.07.2008), http://www.dice.ucl.ac.be/fstandae/PUBLIS/50b.zip
Hermelin, M., Cho, J., Nyberg, K.: Multidimensional linear cryptanalysis of reduced round Serpent. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 203–215. Springer, Heidelberg (2008)
Kaliski, B., Robshaw, M.: Linear cryptanalysis using multiple approximations. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer, Heidelberg (1994)
Nyberg, K.: Linear approximation of block ciphers. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)
Seluk, A.: On probability of success in linear and differential cryptanalysis. Journal of Cryptology 21(1), 131–147 (2008)
Vaudenay, S.: An experiment on DES statistical cryptanalysis. In: CCS 1996: Proceedings of the 3rd ACM conference on Computer and communications security, pp. 139–147. ACM, New York (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cho, J.Y., Hermelin, M., Nyberg, K. (2009). A New Technique for Multidimensional Linear Cryptanalysis with Applications on Reduced Round Serpent. In: Lee, P.J., Cheon, J.H. (eds) Information Security and Cryptology – ICISC 2008. ICISC 2008. Lecture Notes in Computer Science, vol 5461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00730-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-00730-9_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-00729-3
Online ISBN: 978-3-642-00730-9
eBook Packages: Computer ScienceComputer Science (R0)