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Abstract. In this paper, we present a new technique for Matsui’s algo-
rithm 2 using multidimensional linear approximation. We show that the
data complexity of the attack can be reduced significantly by our method
even when the linear hull effect is present. We apply our method to the
key recovery attack on 5-round Serpent and demonstrate that our attack
is superior to previous attacks. We present evidence that it is theoreti-
cally possible to reduce the data complexity of the linear attack against
10 round Serpent by factor of 220 when multiple approximations are used.

Keywords: Block Ciphers, Linear Cryptanalysis, Serpent, Multidimen-
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1 Introduction

Linear cryptanalysis is one of the most important methods of attack against
block ciphers. Since Matsui introduced the linear cryptanalysis on DES in 1993,
several attempts to generalize linear attack have been published. One approach
is to use multiple linear approximations for the linear attack. In 1994, Kaliski
and Robshaw [9] showed that the efficiency of the attack could be improved
by using multiple linear approximation depending on the same key parity bit.
In 2004, Biryukov, et al., [4] proposed a statistical framework for Matsui’s al-
gorithm 1 and 2 using multiple linear approximations and assuming similarly
to [9] that the approximations are statistically independent. More rigorous sta-
tistical framework was proposed independently by Baignères, et al., in [2]. In
2008, Hermelin, et al., proposed a multidimensional statistical framework for
Matsui’s algorithm 1, for which the assumption on statistical independence is
not needed [8].

In 2008, Collard, et al., [6] presented experimental results on the linear attack
of Biryukov, et al., against reduced round Serpent. They showed that a linear
attack on Serpent using Matsui’s algorithm 1 could be improved significantly by
exploiting multiple linear approximations, whereas a similar reduction of data
complexity was not achieved using Matsui’s algorithm 2. Authors claimed that
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this inconsistency was caused by the lack of good theoretical estimations of the
correlations of the approximations due to the linear hull effect [10].

In this paper, we propose new techniques for Matsui’s algorithm 2 using multi-
ple linear approximations. In a similar way as in [8], we focus on the distribution
of the multiple approximations rather than individual correlations. We present an
efficient algorithm to apply the relative entropy between distributions for finding
the right key in Matsui’s algorithm 2. We also show that the maximum entropy
of the distributions can be used to improve the efficiency of the key recovery at-
tack when the distributions satisfy a certain general condition. We apply our tech-
niques to reduced round Serpent and demonstrate that our method can reduce the
data complexity of the attack significantly compared to the results of [6]. Hence,
it seems to us that the linear hull effect is not the only reason to account for the
experimental results of Matsui’s algorithm 2 presented in [6].

This paper is organized as follows. In Section 2, the technical background of
our attack method is presented. In Section 3, multiple linear approximations
for reduced round Serpent are set up and the dependency of the theoretical
advantage of the attack is illustrated for different cases according to the number
of linearly independent linear approximations. In Section 4, previously proposed
generalizations of linear attacks are described and the experimental results are
shown. In Section 5, the new techniques are applied to reduced round Serpent
and the experimental results are presented. Section 6 concludes this paper.

2 Technical Background

The first step in a traditional linear attack using Matsui’s algorithm 2 is to find
a linear approximation for the cipher that has the largest bias. Then, an attacker
collects a large amount of plaintext-ciphertext pairs and counts the number of
pairs that satisfy the linear approximation for each possible key values. The
maximum bias over the counted samples indicates the right key value.

In a multidimensional linear attack, the attacker finds a class of linearly in-
dependent approximations whose biases are non-negligible. We call such linear
independent approximations base approximations. If m linearly independent ap-
proximations are established, then additional 2m−1−m approximations can be
constructed as linear combinations of the m base approximations.

Provided that we have 2m − 1 approximations and their probabilities are
p1, . . . , p2m−1, the capacity of the approximations, which is denoted by C, is
defined as [4]

C =
2m−1∑

i=1

(2pi − 1)2 =
2m−1∑

i=1

c2
i ,

where ci = 2pi − 1 is called the correlation of the ith approximation.
In [2], a generalized statistical framework of the multidimensional linear at-

tack was proposed. Let us consider a process that generates independent random
variables Z1,K , Z2,K , . . . , Z2m,K depending on the key K ∈ GF (2l). Let K0 de-
note the right key and K1, . . . , K2l−1 be the wrong key values. We assume that
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for K = K0, all variables Zi,K ’s follow the distribution D0, whereas for K �= K0,
all Zi,K ’s follow the distribution D1.

Suppose that we target to recover l-bit last round key. Once m base approx-
imations have been established over all rounds of the cipher except for the last
round, the linear attack using multiple approximations proceeds in four phases.

– Counting Phase. Collect the samples of the plaintext-ciphertext pairs on
the targeted cipher and counts the number of samples which satisfy m-
dimensional linear approximation.

– Analysis Phase. For each of the 2l candidate keys, measure the distance
of the empirical distribution from the theoretical distribution.

– Sorting Phase. Sort 2l candidate keys according to their distances.
– Searching Phase. Exhaustively try all the candidate keys in the sorted

order until the correct key is found.

In the analysis phase, the relative entropy between two distributions is measured
as follows:

Definition 1. The relative entropy or Kullback-Leibler distance between two
distribution D0 and D1 is defined as

D(D0||D1) =
∑

z∈Z

PrD0 [z] log
PrD0 [z]
PrD1 [z]

with the assumptions that p log p
0 = 0 and 0 log 0

p = 0.

Let Δ(D) denote the Squared Euclidean Imbalance [2] of the distribution D of
a random variable taking values in the set Z ⊂ GF (2m). It is defined as

Δ(D) = |Z|
∑

z∈Z

(PrD[z] − 1
|Z|)

2.

Note that C = Δ(D) if D is the probability distribution of m base approxima-
tions as shown in [8].

Let N denote the number of samples and Φ(t) denote the cumulative normal
distribution function that is defined as

Φ(t) =
1√
2π

∫ t

−∞
e−

1
2u2

du.

We apply the key ranking procedure, originally developed in [2] for the LLR-
statistic, to the Kullback-Leibler distance, and assume that D(D0||D1)|K=K0 −
D(D0||D1)|K �=K0 is approximately normally distributed with mean μ = NΔ(D)
and standard deviation σ =

√
2NΔ(D) [2]. Thus, the probability that a

wrong key K �= K0 has a better rank than K0 is approximately Φ(−μ/σ) =
Φ(−√

NΔ(D)/2) when the number of samples is large. Since the rank of K0 is

1 +
∑

K

1D(D0||D1)|K=K0<D(D0||D1)|K �=K0

so the expected rank of K0 is 1 + (2l − 1)Φ(−√
NΔ(D)/2) [12,2].
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In [11], Selçuk provided a statistical analysis of the success probability of linear
cryptanalysis. If the correct value of the l-bit key is ranked at the r-th position
out of 2l possible candidates, the attack obtains an (l− log r)-bit advantage over
exhaustive search [11].1 Therefore, the advantage a of the attack is expressed as

a = l − log r = l − log(1 + (2l − 1)Φ(−
√

NΔ(D)/2)) (1)

3 Multiple Linear Approximations of 4 Round Serpent

Suppose that we have m base approximations which are described as follows:

ui · P ⊕ vi · C = κi · K, i = 1, . . . , m

where ui, vi and κi stand for the input mask, output mask and the key mask,
respectively. Also, P, C and K represent the plaintext, ciphertext and the key,
respectively. The ”·” operation means a standard inner product. Given γ =
(γ1, . . . , γm) where γi ∈ {0, 1} and γ �= (0, . . . , 0), a combined approximation is
constructed by

m⊕

i=1

γi(ui · P ⊕ vi · C) =
m⊕

i=1

γi(κi · K).

Hence, we obtain 2m − 1 approximations in total.
We target to attack the 5-round Serpent using Matsui’s algorithm 2. For this,

we need to establish a chain of linear approximations over 4 rounds that has
a significant bias. The best linear approximations for the 4-round Serpent were
presented in [3] and [7]. Due to the structure of the round function of Serpent, one
can obtain several linear approximations that hold with equal or slightly smaller
bias based on the same round approxiamtions. The input and output masks on
the base approximations used for our attack are listed in Table 3 in Appendix
B. The linear approximations start from round 4 (using S-box 4) and end up in
round 7 (using S-box 7). The output mask is chosen in such a way the number
of active S-box in round 8 is minimal. Hence, the multiple approximations use
only a single output mask and it is denoted as v1 in Table 3.

Table 1 shows the correlations and the capacity of approximations for different
numbers m of base approximations by which 2m−1 approximations are obtained
in total. Note that the base approximations are taken from the top of the list from
Table 3 in order. Using Equation (1) and Table 1, we derive, for different values
of m, the relation between the advantage of the attack and data complexity,
which is illustrated in Figure 1.

So far, two types of linear attacks using multiple linear approximations have
been investigated in the literature: linear attack using correlation (or type-I
attack) and linear attack using distribution (or type-II attack). The attacks
presented in [4] and [6] can be classified as type-I attack, whereas the multidi-
mensional attack in [8] is a type-II attack. In the next section, we apply type-I
attack to reduced round Serpent and show the experimental results.
1 A slightly different measure of success was proposed for use in [4] where it was called

as gain.
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Table 1. The correlations and capacities according to 1, 4, 7, 10 and 12 base approx-
imations

# base appr. 1 4 7 10 12

# combined appr. 0 11 120 1013 4083

correlation

2−13 1 8 8 8 8
2−14 0 0 32 64 80
2−15 0 0 0 128 256
2−16 0 0 0 0 256

0 0 7 87 823 3495

capacity 2−26 2−23 2−22 2−21 2−20.42
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Fig. 1. Evaluation of the theoretical advantage of attacks using 1,4,7,10 and 12 base
approximations

4 Linear Attacks Using Correlations of Multiple
Approximations

Suppose that we have M linear approximations with correlations c1, . . . , cM .
The empirical correlations of M approximations by the key K are denoted by
ĉ1,K , . . . , ĉM,K . Then, we consider the sum of the square of the correlations

||ĉK ||2 =
M∑

i=1

ĉ2
i,K , where K = 0, . . . , 2l − 1. (2)

According to the wrong key hypothesis, it is assumed that ĉi,K �=K0 does not
have any correlation (just like a random variable). Thus, the distance ||ĉK ||2
by the correct key K = K0 is expected to be significantly higher than the one
induced by incorrectly guessed key K �= K0. Hence, the correct key can be
recovered by taking K whose ||ĉK ||2 is maximal.
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In this method, it is not important whether the empirical correlations by the
right key are matched to the theoretically calculated values or not. On the other
hand, a method which Biryukov, et al., suggested in [4] is to extend Matsui’s
algorithm 1 for Matsui’s algorithm 2 using multiple approximations. Hence, the
accuracy of theoretically calculated correlations affects the performance of the
attack.

Let us denote the parity key bits of the M approximations by G =
(g1, . . . , gM ), that is, ui · P + vi · C = gi where 1 ≤ i ≤ M . For each value
of a pair (K, G), a vector of theoretical correlations is constructed as follows:

cK,G = (0, . . . , 0, (−1)g1c1, . . . , (−1)gM cM , 0, . . . , 0),

where the location of the subvector ((−1)g1c1, . . . , (−1)gM cM ) depends on the
value of K. Hence, the vector cK,G has M ×2l entries and the number of possible
pairs is 2m×2l. Then, the distance between empirical correlation and theoretical
correlation is measured using the following equation:

||ĉK − cK,G||2 =
M∑

j=1

(ĉj,K − (−1)gj cj)2 +
∑

κ �=K

M∑

j=1

ĉ2
j,κ. (3)

The correct key is recovered by taking the key value whose ||ĉK − cKi,G||2 is
minimal. If the linear hull effect [10] is not present, Equation (3) is slightly
better than Equation (2) since two terms in Equation (3) are distinguishable for
each value of K and G.

We applied two type-I attacks to the 5-round Serpent with various multiple
linear approximations taken from Table 1. The experimental results are displayed
in Figure 2. We can see in this figure that the advantage of the attack is far worse
than the theoretical expectation shown in Figure 1. Furthermore, when more
than 4 base approximations are used, the advantage of the attack becomes worse
even though the capacity increases. This exemplifies that the data complexity
required for the type-I attacks depends not only on the capacity but also on the
distribution of approximations. The (exact) relation between the capacity, the
number of approximations and data complexity required for the type-I attack
remains an open problem.

5 Linear Attacks Using Distribution of Multiple
Approximations

In this section, we propose new techniques on the linear attack using the distri-
bution of multiple approximations. Our attack can be seen as an extension of
the multidimensional linear attack [8] that was applied to Matsui’s algorithm 1.

Suppose we have m base approximations and the boolean values of m approx-
imations are G = (g1, . . . , gm). Using m base approximations, we build 2m − 1
approximations whose correlations are c1, . . . , c2m−1. Then, the theoretical prob-
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Fig. 2. Type-I linear attacks with 1, 4, 7 and 10 base approximations using Equation
(2) (left) and (3) (right)

ability distribution of approximations is constructed in the following way [8]:

pi,G = 2−m + 2−m
2m−1∑

j=1

(−1)j·i⊕j·Gcj , where i, G ∈ {0, 1}m. (4)

Note that the size of theoretical distribution is 2m × 2m.
Let PG = (p0,G, . . . , p2m−1,G) denote the theoretical distributions by the G.

Then, it is clear from Equation (4) that the distribution G has the following
property:

Property 1. A distribution PG′ is a permutation of PG for all G′ �= G. In
particular, pi,G = pī,Ḡ where X̄ is a bitwise negation of X .

Let us remind that only one output mask is used for the base approximations.
This is a common situation for Matsui’s algorithm 2 using multiple approxima-
tions for minimizing the active S-boxes. Since the output mask vi for all base
approximations is the same, only odd number of combinations of the base ap-
proximations have nonzero correlations among 2m − 1 possible approximations.
Thus, Equation (4) is equivalently expressed as

pi,G = 2−m + 2−m
∑

j∈Vm

(−1)j·i⊕j·Gcj . (5)

where Vm = {ν|0 < ν < 2m, Hamming weight of ν is odd}. From Equation (5),
we can derive the following property:

Property 2. Since ν · G ⊕ ν · Ḡ = 1 for ν ∈ Vm, we have

pi,G =2−m+2−m
∑

j∈Vm

(−1)j·i⊕j·G cj =2−m+2−m
∑

j∈Vm

(−1)j·i⊕j·Ḡ⊕1 cj =2−m+1−pi,Ḡ.

By similar reason, we get pī,G = 2−m+1 − pi,G.
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Since we target to recover l-bit of the last round key, we obtain 2l empiri-
cal distributions for each of candidate key in the counting phase. Let Q̂K =
(q̂0,K , . . . , q̂2m−1,K)denote the empirical distributionby thekeyK. It is knownthat
a relative entropy between two distributions is measured optimally by Kullback-
Leibler distance [2,8]. According to Definition 1, the Kullback-Leibler distance be-
tween the empirical distribution Q̂K = (q̂0,K , . . . , q̂2m−1,K) by K and the theoret-
ical distributions PG = (p0,G, . . . , p2m−1,G) by G is calculated as follows:

D(Q̂K ||PG) =
2m−1∑

i=0

q̂i,K log
q̂i,K

pi,G
. (6)

Once the empirical distribution for each candidate key is obtained, the analysis
phase of our attack proceeds in two steps:

– Step 1: For each K, measure the distances D(Q̂K ||PG) for all candidates of
G ∈ {0, 1}m and sort the candidates of G according to their distances.

– Step 2: For sorted values of G, measure D(Q̂K ||PG) for all candidates of
K ∈ {0, 1}l.

The step 1 applies Matsui’s algorithm 1 to determine the right value of G, whereas
in the step 2, Matsui’s algorithm 2 is applied to recover the right value of K.

5.1 Using the Maximum Distance

In the original Matsui’s algorithm 1, the correct parity key bit has the mini-
mum Euclidean distance, whereas the maximum Euclidean distance indicates
the opposite sign of the correct parity key. When multiple approximations are
applied to Matsui’s algorithm 1, it is natural to think that the correct values of
multiple parity key bits hold the minimum squared Euclidean distance by Equa-
tion (2), whereas the opposite signed key parity bits have the maximum squared
Euclidean distance. In this way, the maximum distance has the same amount of
information as the minimum distance. However, it has been often ignored and
not used for the linear attacks on the block ciphers.

When the distribution of the approximations is taken into account under
the condition that all multiple approximations have the same output masks, a
similar intuition can be applied. Due to Property 1, if pi,G = 2−m + εi, then,
pi,Ḡ = 2−m − εi. Hence, if the right value of G has the minimum value of
D(Q̂K ||PG), then, equivalently, the right value of Ḡ is expected to have the
maximum value of D(Q̂K ||PḠ). This intuition is proved in the following lemma:

Lemma 1. Suppose that only a single output mask is used for m base approxi-
mations. Let Gmin (resp. Gmax) denote the G such that D(Q̂K ||PG) is minimal
(resp. maximal). If K is the correct key, then Gmin and Gmax are expected to have
equivalent information and Gmax = Ḡmin where X̄ is a bitwise negation of X.

Proof. (sketch) For fixed G0, we can write

D(Q̂K ||PG0) − D(Q̂K ||PG) =
2m−1∑

i=0

q̂i,K log
pi,G

pi,G0

=
2m−1∑

i=0

q̂i,K log
pī,Ḡ

pī,Ḡ0

. (7)
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Fig. 3. An example of the usage of Gmax when linear hull effect is present

It is expected that Q̂K ≈ PG for some G if K is the right key. Thus, by Property
2, we can put q̂i,K ≈ 2−m+1 − q̂ī,K . Then, Equation (7) is approximated by

2m−1∑

i=0

(2−m+1 − q̂ī,K) log
pī,Ḡ

pī,Ḡ0

= −
2m−1∑

i=0

q̂ī,K log
pī,Ḡ

pī,Ḡ0

= −
2m−1∑

i=0

q̂i,K log
pi,Ḡ

pi,Ḡ0

= D(Q̂K ||PḠ) − D(Q̂K ||PḠ0
).

since
∑2m−1

i=0 log pī,Ḡ

pī,Ḡ0
= 0 from Property 1. Hence, for any G �= G0, if

D(Q̂K ||PG0) > D(Q̂K ||PG) , then D(Q̂K ||PḠ) > D(Q̂K ||PḠ0
). 	


However, our experiments showed that Gmax was not always equal to Ḡmin. The
reason is that, in practice, the theoretical distributions (which are constructed
by the theoretical correlations) are not accurate due to the linear hull effect. In
particular, our experiments show that the maximum distance is more reliable
than the minimum distance.

Figure 3 provides an example of this situation. Let us assume that K0 is the
right key and PLH is a true distribution. (LH denotes the linear hull.) Then,
it is expected that an empirical distribution QK0 is close to PLH . If a distribu-
tion PGmin is different from PLH , there exist possibilities that D(Q̂K0 ||PGmin) >
D(Q̂K0 ||PGi) for some Gi �= Gmin. However, in the same situation, the relation
D(Q̂K0 ||PGmax) > D(Q̂K0 ||PGi) persists as illustrated in Figure 3. If the mini-
mum distance is measured, Gi is (wrongly) guessed as a correct G since db > da.
On the other hand, if the maximum distance is measured, Gmax is guessed as a
negation of correct G, since dc > da. Our experimental results also show that a
key recovery attack using Gmax is superior to that using Gmin. Hence, the right
key is more reliably recovered by taking the key value from

max
K

max
G

D(Q̂K ||PG).

This observation is experimentally verified in Figure 4. More discussions on the
experiments will be given in Subsection 5.4.
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5.2 Summary of Our Method for Matsui’s Algorithm 2

Given N plaintext-ciphertext pairs, our attack is described as follows.

– Initialize 2l counters where l denotes the targeted key bits of the last round
key.

– Compute the theoretical distribution of m approximations for each value of
m parity bits and store them in a 2m × 2m-table.

– For each of the l-bit value of the last round key,
• Decrypt the ciphertext partially using the guessed l-bit value of the last

round key.
• Compute the XOR of the input parity and output parity for each ap-

proximation.
• Build an m-bit vector whose coordinates correspond the XORed parity

bits of approximations.
• Increment the counter indexed by both the vector and the l-bit guessed

key.

– For each of the l-bit value of the last round key
• For each of the m-bit value of the parity key, measure the Kullback-

Leibler distance between the empirical distributions indexed by the l-bit
value and the theoretical distribution indexed by the m-bit value.

• Choose the maximum value of D(Q̂K ||PG) for each K and store it as
D(Q̂K ||PGmax).

– Sort all the candidate last round key using their values of D(Q̂K ||PGmax).
– Exhaustively try all keys from the sorted list of all candidate until the correct

key is found.

5.3 Comparison of Time and Memory Complexity

Suppose that the number of base approximations for multidimensional linear
attack is m and the targeted key size is l bits. For type-I attacks, we assume
that M linear dependent approximations are used where m parity key bits are
involved. Thus m ≤ M < 2m.

In the counting phase, for each key candidate and for each plaintext-ciphertext
pair, type-I attacks need to update M counters by evaluating M approximations,
while multidimensional attacks need to update one of 2m counters by evaluat-
ing m base approximations. In the analysis phase, type-I attacks evaluate M
correlations for each candidate of the last round key. In the multidimensional
attacks, one distribution consisting of 2m empirical frequencies is compared
with 2m different theoretical distributions by computing KL distances, where
each KL distance has 2m terms. The time complexity of multidimensional at-
tack and type-I attacks using N plaintext-ciphertext pairs are summarized in
Table 2.
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Table 2. The time complexity of type-I attacks and multidimensional attack

Squared Correlations Sum (Eq. (2)) Biryukov, et al., (Eq. (3)) Multidimensional

Counting phase N · M · 2l N · M · 2l N · m · 2l

Analysis phase M · 2l M · 22l+m 2l+2m

Recovered Key l bits (l + m) bits (l + m) bits

For memory complexity, type-I attacks require 2m storage for counters and
multidimensional attack requires 22m+1 storage for both the counters and the
theoretical distribution.

Note that the multidimensional attack and the method of Biryukov, et al., can
retrieve the information on the last round key K and the key parity G together.
On the other hand, type-I attack using the sum of squares of correlations, see
Equation (2), can recover the last round key K only.

5.4 Experimental Results

We applied our attack algorithm to the 5-round Serpent. We picked up 7, 10 and
12 base approximations from Table 1 and targeted to recovering of 12 bits of the
last round key. The experimental results are displayed in Figure 4 and the results
of type-I attacks are compared to them. In the experiments, the 128-bit secret
keys and plaintexts were randomly generated and ciphertexts were collected by
encrypting the plaintexts using 5-round Serpent.

Figure 4 shows that the advantage of the multidimensional linear attack us-
ing the maximum Kullback-Leibler Distance is significantly higher than for the
other attacks. We also show that multidimensional attack using the minimum
Kullback-Leibler Distance is worse than the other attacks. This suggests that the
linear attack using the minimum distance may be more vulnerable to the linear
hull effect. Finally, we note that our experimental results are still worse than the
theoretical curves in Figure 1 that were drawn by Equation (1). Further research
is required for the statistical modeling of multidimensional linear approximation
and to find the optimal multidimensional extension of Matsui’s algorithm 2 and
to accurately predict its performance.

5.5 Extension for Further Rounds of Serpent

Our attack can be further applied for a larger number of round of Serpent since
we can obtain multiple approximations simply by applying various input masks
in the first round. For instance, the linear attacks on 10-round Serpent in [3] use a
9-round linear approximation with probability of 1

2 (1−2−57). Thus, the capacity
of the best single approximation is 2−2×57 = 2−114. On the other hand, we can
construct multiple linear approximations from the same linear trail of 9-round
Serpent. The first round of the linear trail includes 10 active S-boxes and each
S-box has 10 non-negligible approximations (2 for 2−1 and 8 for 2−2 correlations
for each S-box) for a fixed output. Thus, we can construct in total 1010 ≈ 233

approximations that have non-negligible correlations. The best correlation of the
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Fig. 4. Comparison of multidimensional attacks and other attacks with various base
approximations
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first round approximation is 2−10 and the number of approximations with the
best correlations is 210. In the same way, the second best correlation of the first
round approximation is 2−11 and 10×212 approximations hold such correlation,
and so on. Hence, the capacity of 233 approximations can be computed as

C = 210

(
10
0

)
2−57×2 + 212

(
10
1

)
2−58×2 + · · · + 230

(
10
10

)
2−67×2 = 2−94. (8)

Therefore, the data complexity of linear attack on 10 round Serpent can be
reduced theoretically by a factor of 220 at the cost of increased time complexity.

In [5], Collard et al. also presented the multiple linear attacks against 10-round
Serpent. According to [5], the best attack on 10-round Serpent needs 299 known
plaintexts with 299 time complexity and 255 memory for recovering 44 bits of the
last round key. This attack uses M = 211 linear approximations and each approx-
imation has the equal bias of 2−55. Hence, the capacity is (2 · 2−55)2 · 211 = 2−97.

On the other hand, the multidimensional linear attack method allows us to
use all the linear approximation involved in 9-round linear trails within the
span of the base approximations. Since the number of active S-boxes of the
first round is 11 and each S-box has 10 linear approximations, the number of
possible approximations is actually 1011. Hence, the capacity is computed as
211

(
11
0

)
2−54×2+ · · ·+233

(
11
11

)
2−65×2 = 2−86. Therefore, it is theoretically possible

to reduce the data complexity of the attack further by a factor of 211. Instead, the
time complexity increases by around 2l+2m = 2132 with the memory complexity
of around 22m+1 = 289.

6 Conclusion

In this paper, we proposed a new technique for the multidimensional linear at-
tacks. We showed that the multidimensional linear attack could be very powerful
with Matsui’s algorithm 2 when multiple linear approximations are available in
the block ciphers. The improvements we achieved using the new techniques stem
from two reasons. Firstly, we take the distribution of the approximations in a
multidimensional way and we measure the distances between two distributions
using Kullback-Leibler distance instead of the sum of the squared correlations.
Secondly, by taking the maximal value of the distances, our method eliminated
errors in the situation where correlations of individual linear approximations
could not be calculated accurately due to the linear hull effect. However, it is
an open problem whether our heuristic technique is optimal and what is its
expected performance.
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A Brief Description of Serpent Algorithm

We use the notation of [1]. Each intermediate value of round i is denoted by B̂i

(a 128-bit value). Each B̂i is treated as four 32-bit words X0, X1, X2, X3 where
bit j of Xi is bit 4 ∗ i + j of the B̂i. Serpent has a set of eight 4-bit to 4-bit S
Boxes S0, . . . , S7 and a 128-bit to 128-bit linear transformation LT . Each round
function Ri uses a single S-box 32 times in parallel.

Serpent ciphering algorithm is formally described as follows.

B̂0 = P
ˆBi+1 = Ri(B̂i)
C = B32

where

Ri(X) = LT (Ŝi(X ⊕ K̂i)), i = 0, . . . , 30
Ri(X) = Ŝi(X ⊕ K̂i) ⊕ K̂32, i = 31

The linear transformation LT is described as follows.

X0, X1, X2, X3 = Si(Bi ⊕ Ki)

http://www.dice.ucl.ac.be/fstandae/PUBLIS/50b.zip
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X0 = X0 ≪ 12
X2 = X2 ≪ 3
X1 = X1 ⊕ X0 ⊕ X2

X3 = X3 ⊕ X2 ⊕ (X0 ≪ 3)
X1 = X1 ≪ 1
X3 = X3 ≪ 7
X0 = X0 ⊕ X1 ⊕ X3

X2 = X2 ⊕ X3 ⊕ (X1 ≪ 7)
X0 = X0 ≪ 5
X2 = X2 ≪ 22

Bi+1 = X0, X1, X2, X3

The detailed description of Serpent can be found in [1].

B Linearly Independent Approximations on 4 Round
Serpent

In our experiments, we used 12 base approximations from the linear trail of 4
round Serpent. The linear approximations start from round 4 (using S-box 4)
and end up in round 7 (using S-box 7). Table 3 shows the input and output
masks of the base approximations that are expressed as

ui · P ⊕ vi · C = κi · K, i = 1, . . . , m

where the ui and vi denote the input and out masks, respectively. Hence, ui is
an input mask of round 4 and vi is an output mask of round 7. We omit the key
mask κi since the exact knowledge of κi is not required for our attack.

Table 3. Input and output masks for the multidimensional linear attack using Matsui’s
algorithm 2

type index mask = (MSB, . . . , LSB)

input mask

u1 (0x70000000, 0x00000000, 0x00000000, 0x07000900)
u2 (0x70000000, 0x00000000, 0x00000000, 0x07000B00)
u3 (0x70000000, 0x00000000, 0x00000000, 0x0B000900)
u4 (0xB0000000, 0x00000000, 0x00000000, 0x07000900)
u5 (0x70000000, 0x00000000, 0x00000000, 0x07000500)
u6 (0x70000000, 0x00000000, 0x00000000, 0x07000600)
u7 (0x70000000, 0x00000000, 0x00000000, 0x07000C00)
u8 (0x70000000, 0x00000000, 0x00000000, 0x01000900)
u9 (0x70000000, 0x00000000, 0x00000000, 0x0A000900)
u10 (0xB0000000, 0x00000000, 0x00000000, 0x03000B00)
u11 (0x10000000, 0x00000000, 0x00000000, 0x07000900)
u12 (0x40000000, 0x00000000, 0x00000000, 0x0B000B00)

output mask v1 (0x00001000, 0x01000000, 0x00000000, 0x00000000)
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The notation of masks are following [3]. For instance, in the input mask

u1 = (0x70000000, 0x00000000, 0x00000000, 0x07000900)

the first 4 bits (which is ’7’) is an input of the leftmost S-Box of the first round.
Hence, there are three active S-boxes in the first round. In the same way, there
are two active S-boxes in the second last round by the output mask v1.
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