Skip to main content

Discrete Curvature Flows for Surfaces and 3-Manifolds

  • Chapter
Emerging Trends in Visual Computing (ETVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5416))

Included in the following conference series:

Abstract

Intrinsic curvature flows can be used to design Riemannian metrics by prescribed curvatures. This chapter presents three discrete curvature flow methods that are recently introduced into the engineering fields: the discrete Ricci flow and discrete Yamabe flow for surfaces with various topology, and the discrete curvature flow for hyperbolic 3-manifolds with boundaries. For each flow, we introduce its theories in both the smooth setting and the discrete setting, plus the numerical algorithms to compute it. We also provide a brief survey on their history and their link to some of the engineering applications in computer graphics, computer vision, medical imaging, computer aided design and others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alliez, P., Meyer, M., Desbrun, M.: Interactive geometry remeshing. In: SIGGRAPH 2002, pp. 347–354 (2002)

    Google Scholar 

  2. Aubin, T.: Équations diffréntielles non linéaires et problème de yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55(3), 269–296 (1976)

    MathSciNet  MATH  Google Scholar 

  3. Bowers, P.L., Hurdal, M.K.: Planar conformal mapping of piecewise flat surfaces. In: Visualization and Mathematics III, pp. 3–34. Springer, Berlin (2003)

    Chapter  Google Scholar 

  4. Bobenko, A.I., Springborn, B.A.: Variational principles for circle patterns and koebe’s theorem. Transactions of the American Mathematical Society 356, 659–689 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Computational conformal geometry library 1.1, http://www.cs.sunysb.edu/~manifold/CCGL1.1/

  6. Chow, B.: The Ricci flow on the 2-sphere. J. Differential Geom. 33(2), 325–334 (1991)

    MathSciNet  MATH  Google Scholar 

  7. Carner, C., Jin, M., Gu, X., Qin, H.: Topology-driven surface mappings with robust feature alignment. In: IEEE Visualization 2005, pp. 543–550 (2005)

    Google Scholar 

  8. Chow, B., Luo, F.: Combinatorial Ricci flows on surfaces. Journal Differential Geometry 63(1), 97–129 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Collins, C., Stephenson, K.: A circle packing algorithm. Computational Geometry: Theory and Applications 25, 233–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Verdiere Yves, C.: Un principe variationnel pour les empilements de cercles. Invent. Math. 104(3), 655–669 (1991)

    Article  MathSciNet  Google Scholar 

  11. Gu, X., He, Y., Qin, H.: Manifold splines. Graphical Models 68(3), 237–254 (2006)

    Article  MATH  Google Scholar 

  12. Guggenheimer, H.W.: Differential Geometry. Dover Publications (1977)

    Google Scholar 

  13. Gu, X.D., Yau, S.-T.: Computational Conformal Geometry. Advanced Lectures in Mathematics. High Education Press and International Press (2008)

    Google Scholar 

  14. Hamilton, R.S.: Three manifolds with positive Ricci curvature. Journal of Differential Geometry 17, 255–306 (1982)

    MathSciNet  MATH  Google Scholar 

  15. Hamilton, R.S.: The Ricci flow on surfaces. Mathematics and general relativity (Santa Cruz, CA, 1986). Contemp. Math. Amer.Math.Soc. Providence, RI 71 (1988)

    Google Scholar 

  16. Jin, M., Kim, J., Luo, F., Gu, X.: Discrete surface ricci flow. IEEE Transaction on Visualization and Computer Graphics (2008)

    Google Scholar 

  17. Jin, M., Luo, F., Yau, S.T., Gu, X.: Computing geodesic spectra of surfaces. In: Symposium on Solid and Physical Modeling, pp. 387–393 (2007)

    Google Scholar 

  18. Koebe: Kontaktprobleme der Konformen Abbildung. Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 88, 141–164 (1936)

    MATH  Google Scholar 

  19. Kharevych, L., Springborn, B., Schröder, P.: Discrete conformal mappings via circle patterns. ACM Trans. Graph. 25(2), 412–438 (2006)

    Article  Google Scholar 

  20. Luo, F., Gu, X., Dai, J.: Variational Principles for Discrete Surfaces. Advanced Lectures in Mathematics. High Education Press and International Press (2007)

    Google Scholar 

  21. Lee, J.M., Parker, T.H.: The yamabe problem. Bulletin of the American Mathematical Society 17(1), 37–91 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. In: SIGGRAPH 2002, pp. 362–371 (2002)

    Google Scholar 

  23. Luo, F.: Combinatorial yamabe flow on surfaces. Commun. Contemp. Math. 6(5), 765–780 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Luo, F.: A combinatorial curvature flow for compact 3-manifolds with boundary. Electron. Res. Announc. Amer. Math. Soc. 11, 12–20 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mostow, G.D.: Quasi-conformal mappings in n-space and the rigidity of the hyperbolic space forms. Publ. Math. IHES 34, 53–104 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  26. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. Technical Report arXiv.org (November 11, 2002)

    Google Scholar 

  27. Perelman, G.: Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. Technical Report arXiv.org (July 17, 2003)

    Google Scholar 

  28. Perelman, G.: Ricci flow with surgery on three-manifolds. Technical Report arXiv.org (March 10, 2003)

    Google Scholar 

  29. Rodin, B., Sullivan, D.: The convergence of circle packings to the riemann mapping. Journal of Differential Geometry 26(2), 349–360 (1987)

    MathSciNet  MATH  Google Scholar 

  30. Schoen, R.: Conformal deformation of a riemannian metric to constant scalar curvature. J. Differential Geom. 20(2), 479–495 (1984)

    MathSciNet  MATH  Google Scholar 

  31. Springborn, B., Schröoder, P., Pinkall, U.: Conformal equivalence of triangle meshes. ACM Transactions on Graphics 27(3), 1–11 (2008)

    Article  Google Scholar 

  32. Thurston, W.P.: Geometry and Topology of Three-Manifolds. Princeton lecture notes (1976)

    Google Scholar 

  33. Thurston, W.P.: Geometry and Topology of Three-Manifolds. Lecture notes at Princeton university (1980)

    Google Scholar 

  34. Thurston, W.P.: The finite riemann mapping theorem (1985)

    Google Scholar 

  35. Trudinger, N.S.: Remarks concerning the conformal deformation of riemannian structures on compact manifolds. Ann. Scuola Norm. Sup. Pisa 22(2), 265–274 (1968)

    MathSciNet  MATH  Google Scholar 

  36. Weitraub, S.H.: Differential Forms: A Complement to Vector Calculus. Academic Press, London (2007)

    Google Scholar 

  37. Yamabe, H.: The yamabe problem. Osaka Math. J. 12(1), 21–37 (1960)

    MathSciNet  Google Scholar 

  38. Yin, X., Jin, M., Luo, F., Gu, X.: Computing and visualizing constant-curvature metrics on hyperbolic 3-manifolds with boundaries. In: 4th International Symposium on Visual Computing (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yin, X., Jin, M., Luo, F., Gu, X.D. (2009). Discrete Curvature Flows for Surfaces and 3-Manifolds. In: Nielsen, F. (eds) Emerging Trends in Visual Computing. ETVC 2008. Lecture Notes in Computer Science, vol 5416. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00826-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00826-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00825-2

  • Online ISBN: 978-3-642-00826-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics