Skip to main content

Computational Geometry from the Viewpoint of Affine Differential Geometry

  • Chapter
Emerging Trends in Visual Computing (ETVC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5416))

Included in the following conference series:

Abstract

In this paper, we consider Voronoi diagrams from the view point of affine differential geometry. A main object of affine differential geometry is to study hypersurfaces in an affine space that are invariant under the action of the group of affine transformations. Since incidence relations (configurations of vertexes, edges, etc.) in computational geometry are invariant under affine transformations, we may say that affine differential geometry gives a new sight in computational geometry.

The Euclidean distance function can be generalized by a divergence function in affine differential geometry. For such divergence functions, we show that Voronoi diagrams on statistical manifolds are invariant under ( − 1)-conformal transformations. We then give some typical figures of Voronoi diagrams on a manifold. These figures may give good intuition for Voronoi diagrams on a manifold because the figures or constructing algorithms on a manifold strongly depend on the realization or on the choice of local coordinate systems. We also consider the upper envelope type theorems on statistical manifolds, and give a constructing algorithm of Voronoi diagrams on ( − 1)-conformally flat statistical manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, N.: Affine immersions and conjugate connections. Tensor 55, 276–280 (1994)

    MathSciNet  MATH  Google Scholar 

  2. Amari, S., Nagaoka, H.: Method of information geometry. Amer. Math. Soc., Providence. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  3. Edelsbrunner, H.: Algorithms in combinatorial geometry. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  4. Eguchi, S.: Geometry of minimum contrast. Hiroshima Math. J. 22, 631–647 (1992)

    MathSciNet  MATH  Google Scholar 

  5. Henmi, M., Kobayashi, R.: Hooke’s law in statistical manifolds and divergences. Nagoya Math. J. 159, 1–24 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kurose, T.: On the divergences of 1-conformally flat statistical manifolds. Tôhoku Math. J. 46, 427–433 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kurose, T.: Conformal-projective geometry of statistical manifolds. Interdiscip. Inform. Sci. 8, 89–100 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Kurose, T.: Manifold structures and geometric structures on maximal exponential models. Lecture note for Osaka City University Advanced Mathematical Institute Mini-School on Introduction to Information Geometry and Its Applications II (in Japanese) (2007)

    Google Scholar 

  9. Lauritzen, S.L.: Statistical manifolds. In: Differential Geometry in Statistical Inferences. IMS Lecture Notes Monograph Series, vol. 10, pp. 96–163. Institute of Mathematical Statistics, Hayward California (1987)

    Google Scholar 

  10. Matsuzoe, H.: On realization of conformally-projectively flat statistical manifolds and the divergences. Hokkaido Math. J. 27, 409–421 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Matsuzoe, H.: Geometry of contrast functions and conformal geometry. Hiroshima Math. J. 29, 175–191 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Matsuzoe, H.: Contrast functions on statistical manifolds with Norden metric. JP J. Geom. Topol. 2, 97–116 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Matsuzoe, H.: Voronoi diagrams on ( − 1)-conformally flat statistical manifolds. Far East J. Math. Sci. 4, 235–249 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Matsuzoe, H.: Geometry of statistical manifolds and its generalization. In: Proceedings of the 8th International Workshop on Complex Structures and Vector Fields, pp. 244–251. World Scientific, Singapore (2007)

    Google Scholar 

  15. Matumoto, T.: Any statistical manifold has a contrast function – On the C 3-function taking the minimum at the diagonal of the product manifold. Hiroshima Math. J. 23, 327–332 (1993)

    MathSciNet  MATH  Google Scholar 

  16. Nielsen, F., Boissonnat, J.D., Nock, R.: On Bregman Voronoi diagrams. In: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 746–755 (2007)

    Google Scholar 

  17. Nomizu, K., Sasaki, T.: Affine differential geometry – Geometry of Affine Immersions. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  18. Nomizu, K., Sasaki, T.: Centroaffine immersions of codimension two and projective hypersurface theory. Nagoya Math. J. 132, 63–90 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Onishi, K., Imai, H.: Voronoi diagrams for an exponential family of probability distributions in information geometry. In: Japan-Korea joint workshop on algorithms and computation, pp. 1–8 (1997)

    Google Scholar 

  20. Onishi, K., Itoh, J.: Voronoi diagrams in simply connected complete manifolds. IEICE Transactions E85-A, 944–948 (2002)

    Google Scholar 

  21. Onishi, K., Takayama, N.: Construction of Voronoi diagram on the upper half-plane. IEICE Transactions 79-A, 533–539 (1996)

    Google Scholar 

  22. Shima, H.: The Geometry of Hessian Structures. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

  23. Simon, U., Schwenk-Schellschmidt, A., Viesel, H.: Introduction to the affine differential geometry of hypersurfaces. Lecture notes of the Science, University of Tokyo (1991)

    Google Scholar 

  24. Zhang, J.: A note on curvature of a-connections of a statistical manifold. Ann. Inst. Stat. Math. 59, 161–170 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, J., Matsuzoe, H.: Dualistic Riemannian manifold structure induced from convex function. Advances in Mechanics and Mathematics (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matsuzoe, H. (2009). Computational Geometry from the Viewpoint of Affine Differential Geometry. In: Nielsen, F. (eds) Emerging Trends in Visual Computing. ETVC 2008. Lecture Notes in Computer Science, vol 5416. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00826-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00826-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00825-2

  • Online ISBN: 978-3-642-00826-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics