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Abstract. In a seminal paper, Amari (1998) proved that learning can be
made more efficient when one uses the intrinsic Riemannian structure of
the algorithms’ spaces of parameters to point the gradient towards better
solutions. In this paper, we show that many learning algorithms, includ-
ing various boosting algorithms for linear separators, the most popular
top-down decision-tree induction algorithms, and some on-line learning
algorithms, are spawns of a generalization of Amari’s natural gradient
to some particular non-Riemannian spaces. These algorithms exploit an
intrinsic dual geometric structure of the space of parameters in relation-
ship with particular integral losses that are to be minimized. We unite
some of them, such as AdaBoost, additive regression with the square loss,
the logistic loss, the top-down induction performed in CART and C4.5,
as a single algorithm on which we show general convergence to the opti-
mum and explicit convergence rates under very weak assumptions. As a
consequence, many of the classification calibrated surrogates of Bartlett
et al. (2006) admit efficient minimization algorithms.

1 Introduction

This paper is an attempt to unite some supervised learning algorithms that
have led the last decade on iterative learning algorithms, and bring some novel
performance- or structural-related results. Among the algorithms concerned,
there are AdaBoost and related boosting algorithms, top-down decision tree in-
duction algorithms (including those of CART, C4.5), and some on-line learning
algorithms.

Our starting point is a result of [1], which states that gradient-based learning
leads to better results if one takes into account in the gradient the Rieman-
nian structure of the space of parameters. During the last decade, most of the
successes in supervised learning algorithms have been obtained when minimiz-
ing functions that serve as primers for the minimization of the empirical risk
— functions called surrogates. This is the case for AdaBoost, additive logistic
regression, decision tree induction, Support Vector Machines, on-line learning
algorithms [14,23,25,36,38], and many others. These surrogates work on spaces
of parameters, on which they define singular geometries — generally, they are
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not symmetric and do not obey the triangular inequality. A significant amount
of work has recently been devoted to set in order the huge set of candidate sur-
rogates. For example, statistical consistency properties have been shown for a
wide set containing most of the surrogates relevant to learning, classification cal-
ibrated surrogates [5]; other important properties, like the algorithmic questions
about minimization, have been explicitly left as important problems to settle
[5]. A relevant contribution on this side came earlier from [29], who proved mild
convergence results on an algorithm inducing linear separators and working on
a large class of convex surrogates, not necessarily classification calibrated; [29]
also left as an important problem the necessity to fully solve this algorithmic
question, such as by providing convergence rates.

In this paper, we show that our algorithms of interest can be seen as partic-
ular geodesic walks on the space of parameters, and these geodesic walk take
benefit of the non Riemannian geometric structure of this space to progress to-
wards better or optimal solutions, thus generalizing the Riemannian approach of
[1]. Informally, the update of parameters is located on iso-Bregman divergence
surfaces, progressing towards the minimization of various functions — edges in
boosting, Bregman divergences in on-line learning. This progression scheme is
very efficient: we show that a very large subset of classification calibrated losses
may be minimized by a single boosting algorithm, with guaranteed rates of
convergence under weak assumptions. We also show that this algorithm unifies
various boosting algorithms, ranging from the top-down induction for decision
trees performed in CART [9], C4.5 [34] to AdaBoost [36] and other boosting algo-
rithms for linear separators. Thus, this geometric approach and its performances
do not pertain to a specific kind of formalism for classifiers.

Our contribution is also structural: we show that a particular subset of classi-
fication calibrated surrogates has analytical, statistical and classification ratio-
nales, and strong ties with the maximum likelihood estimation for a subset of the
exponential families of distributions. Finally, we provide experimental results on
various surrogates, using a single surrogate to learn, or making attempts to tune
the surrogate at hand for a more efficient optimization.

In Section 2, we present the learning settings; Section 3 presents the losses
and surrogates, and their properties. Section 4 presents the related geometric
problems. Section 5 presents our applications on linear separators, and Section
6 does the same for other classifiers. Section 7 presents our experimental results.

2 Learning Settings

2.1 General Considerations on Supervised Learning

Bold faced variables such as w and x, represent vectors whose dimension shall be
clear from context. Unless otherwise stated, sets are represented by calligraphic
upper-case alphabets, e.g. X , and enumerated following their lower-case, such as
{xi : i = 1, 2, ...} for vector sets, and {xi : i = 1, 2, ...} for other sets. Blackboard
faces such as S denote subsets of (powers of) R, the set of real numbers.
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Machine learning refers in general to the possibility, for a computer, to improve
its performances based on its experience. This definition may be formalized as the
automatized construction of models to minimize losses based on training data.
At the risk of oversimplifying, a major trend focuses on supervised learning (that
we sometimes call classification for short) with batch or on-line algorithms.

The key input of supervised learning is the notion of example. An example is
an ordered pair (o, c). The observation o belongs to a domain O of dimension
n (such as {0, 1}n, R

n, the set of all patient descriptions, etc.), and the class c
belongs to a set

C = {c+, c−} (1)

of two classes or labels (such as “ill/not ill” if the observations describe patients).
We adopt the common convention that c+ is called the positive class, and c−

the negative class.
The common problem to batch and on-line learning is the efficient and ac-

curate automated construction of classifiers. Without entering into unnecessary
details, in both settings, “efficiency” essentially means for the learning algorithms
to be polynomial in relevant parameters. A classifier is a function H : O → C,
which belongs to a set defined by a particular formalism, whose choice is generally
made by the user. This choice defines an absolute bias : a bias since it influences
learning, and absolute since it is not questioned once it is done [28,32]. The free-
dom in the choice of the classifier is of primary importance, as users sometimes
feel uncomfortable with some formalisms, in particular when it comes to inter-
preting the classifiers themselves [26,32]. Learning algorithms for any formalism
should thus be appreciated in the light of their portability, their scalability to
other formalisms.

There are many formalisms available, two of which are of primary importance,
as they are the most frequently used in supervised learning: linear separators
(LS) and decision trees (DT).

A LS is a weighted linear vote:

H(o) .=
∑

t

αtht(o) , (2)

with real leveraging coefficients, αt, and votes, sometimes called features, that
can be themselves classifiers ht(.) : O → O ⊆ R. The output of these classifiers
is not necessarily R: the simplest case is O = {−1, 1}; sometimes, one also
uses features that abstain, with O = {−1, 0, 1}, and so on until R itself [32,36].
In general, O is centered around the origin (hereafter, this property shall be
assumed when using notation O). Regarding such real votes, the notation of the
classes in (1) is not convenient anymore. It is more convenient to carry out a
first abstraction of the classes by a bijective mapping:

c ∈ {c−, c+} � y∗ ∈ {−1, +1} .

The convention is c+ � +1 and c− � −1. We thus have two distinct notations
for an example: (o, c), (o, y∗), that shall be used without ambiguity. Let us define
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Fig. 1. A DT with 3 leaves and 2 internal nodes

threshold function σ : R → {−1, +1}, +1 iff x ≥ 0 and −1 otherwise. Then the
class assigned by a LS H is σ ◦ H .

An ordinary, 2-ary DT, is a rooted directed acyclic tree whose internal nodes
have outdegree two (see Figure 1). Each internal node is labeled by a description
variable, and each of its outgoing arcs is labeled by a Boolean test over this
variable, in such a way that the two outgoing arcs of an internal nodes have
complementary tests over the variable. Assume for example that O = {0, 1}n,
that is, observations are represented with Boolean variables. In Figure 1, arcs
with a black arrow symbolize the test that the related Boolean variable is 1
(true), while arcs with a white arrow symbolize the test that the related Boolean
variable is 0 (false). Starting from the root, an observation o ∈ O follows the
path whose tests it satisfies, until it reaches a leaf used to predict its class. The
fundamental difference between DT and LS is that DT makes a partition of O
in cells (convex for ordinary decision trees) of constant values, and this partition
is made in a recursive fashion, which is not the case for LS1. It is thus very
convenient to put, at each leaf, a constant value representing the class assigned to
all observations that reach the leaf. In addition to the two first already exposed,
a third convention is used, which consists in putting a value in [0, 1] being an
“estimator” for the positive class membership probability for leaf k:

H(o) = P̂r[c = c+|o reaches leaf k] . (3)

A second abstraction of the classes in (1) becomes convenient in this case:

c ∈ {c−, c+} � y ∈ {0, 1} .

The convention is c+ � 1 and c− � 0. We have one more notation for an
example, that shall be used without ambiguity with the two others: (o, y). We
define a second threshold function τ : [0, 1] → {0, 1}, 1 iff x ≥ 1/2 and 0 otherwise.
Then, the class assigned by a DT H is τ ◦ H .

The quality of a classifier H on example (o, c) is obtained by comparing
the prediction H(o) to the true class c of the example, via a loss function �.
Intuitively, � is an increasing function of the discrepancy between c and the
output of H . The simplest and most natural loss, which historically served as
1 Modulo some technical assumptions on the votes ht that virtually systematically

hold, any LS also defines a partition of O in regions of constant values, but this
partition is not recursive.



Intrinsic Geometries in Learning 179

the basis for supervised learning models [37], is the 0/1 loss, �0/1(c, H), which
may be defined in two equivalent ways depending on im(H):

�0/1

R
(y∗, H) .= 1y∗ �=σ◦H if im(H) = O , (4)

�0/1
[0,1](y, H) .= 1y �=τ◦H if im(H) = [0, 1] . (5)

Here, 1π is the indicator variable that takes value 1 iff predicate π is true, and
0 otherwise. In the general loss case, wherever needed for a clear distinction of
the output of H , we put in index to � an indication of its image (R, meaning it is
actually some O ⊆ R, or [0, 1]). Sometimes, we also put in exponent an indication
of the loss name, as we have done in (4) and (5) for the 0/1 loss. Both losses �R

and �[0,1] are defined simultaneously via popular transfer functions, such as the
logit transform [14]:

logit(p) .= log
p

1 − p
, ∀p ∈ [0, 1]. (6)

The following examples on the 0/1 loss are easy to check:

�0/1
[0,1](y, H) = �0/1

R
(y∗, logit(H)) ,

�0/1
R

(y∗, H) = �0/1
[0,1](y, logit−1(H)) .

We have implicitly closed the domain of the logit, adding two symbols ±∞
to ensure that the eventual infinite values for H can be scaled back to [0, 1].
Hereafter, functions on which the closure of both the domain and the image
is assumed are called admissible. The loss is then used in a general risk which
aggregates the losses over a particular set of examples. The way this risk is
computed is different in batch and on-line learning.

2.2 Our Batch Setting

The most important model of batch learning is the so-called PAC (for Probably
Approximately Correct) learning model of Valiant [37]. In this model, learning
has two requirements, one which is computational, and the other, which is sta-
tistical. The input is a sample S = {(o1, c1), (o2, c2), ..., (om, cm)} of training
examples, supposed sampled i.i.d. from a subset of O × C. The sampling distri-
bution is unknown, but fixed. Thus, we cannot require that the classifier built on
S be a perfect match for the class of any example of the whole domain, as for ex-
ample it may be the case that we sample the same example m times. Rather, the
statistical constraint is a slightly weaker form of generalization constraint, as we
want that H represents a good approximation, with high probability, of the true
labeling of the examples. It turns out that modulo some structural conditions on
the formalism of H , a sufficient condition to learn is to build classifiers with a
small overall loss over S, that is, a small empirical risk (we follow a convention
of [10]):

ε0/1(S, H) .=
∑

i

�0/1(ci, H(oi)) . (7)
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The 0/1 loss has a significant drawback: is not differentiable and not continuous
(see Figure 4). Thus, while it is the criterion used to evaluate classifiers, it
precludes important candidate machineries for its minimization, and calls in
fact for other risks to optimize. For this objective, we define out of a general loss
� a general risk ε:

ε(S, H) .=
∑

i

�(ci, H(oi)) . (8)

To finish up with batch learning, we focus on a particular batch process for
learning which is iterative by nature. In boosting [13,22,24,33], we suppose that
H is built in a iterative, greedy fashion: at each main step t of the algorithm, we
request for a weak classifier ht to a weak learner, and H is built by repeatedly
folding in all the weak classifiers obtained so far. This growing process for H
must ensure that the current classifier keeps the desired formalism: when H is
a LS, weak classifiers are simply summed up in the overall vote. When H is a
DT, each weak classifier is a decision tree with a single internal node (a stump)
which replaces a leaf in the current DT H . With respect to on-line learning
(see below), boosting is dual in the sense that the stream of examples of on-line
learning becomes a “stream” of weak classifiers in boosting.

2.3 Our On-Line Setting

The setting of on-line learning is inherently iterative but quite different from
batch learning [15,25]. In particular, we are not given set S. Rather, we receive
examples one by one, out of an infinite stream of examples. The endless nature of
the stream is important: should the stream be supposed to end at some moment,
the difference with batch learning would be superficial; in particular, efficient
learning would essentially boil down to waiting for the stream to end, and then
batch learn on the examples seen so far.

In this endless supply of examples, a convenient thing to do is to repeatedly
update the current classifier H each time an example is received, to stay close to
some reference classifier. We start with an initial “guess” classifier H0 which can
be a constant prediction, and we repeat infinitely many times (i) the receipt of
example (ot, ct), (ii) the update of classifier Ht−1 to classifier Ht, for t = 1, 2, ....
At iteration t, if we denote St the set of current examples received so far, a
natural objective for learning is to ensure that the set of classifiers that have
been built so far has achieved over the stream of examples a 0/1 loss which stays
close to that of a reference classifier taken from the same set of classifiers as ours.
More formally, this objective may be formalized as requiring, for any T > 0 and
any reference classifier Hr:

T∑

t=1

�0/1(ct, Ht−1(ot)) ≤
T∑

t=1

�0/1(ct, Hr(ot)) + penalty , (9)
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or, from a more general standpoint,
T∑

t=1

�(ct, Ht−1(ot)) ≤
T∑

t=1

�(ct, Hr(ot)) + penalty ; (10)

this objective becomes perhaps more meaningful from the goodness-of-fit stand-
point, if we think of Hr as achieving a convenient minimization of the right-hand
side of (9). This, however, may require for Hr a bit more than simply minimizing
the risk of the right-hand side, as the penalty can depend upon Hr as well. The
role of complexity is naturally pregnant in on-line learning, as the stream may pro-
vide us with examples at extremely fast pace. To finish up with on-line learning,
we extend the general risk definition in (8) to its relevant twin in on-line learning:

ε
(
ST , {Ht}T−1

t=0

) .=
T∑

t=1

�(ct, Ht−1(ot)) , ∀T > 0 , (11)

so that (10) may be written: ε
(
ST , {Ht}T−1

t=0

)
≤ ε(ST , Hr) + penalty.

3 Bregman Loss Functions

We now present alternative losses that may be used in both batch and on-line
learning. Most interestingly, the same alternatives emerge almost independently
out of analytical, classification or statistical rationales.

3.1 Integral Losses

Linear separators, decision trees, and many other classifiers, are naturally “more
powerful” than what is required since they encode a much greater number of
values than the set of two classes. These values typically belong to two kinds of
sets. The first contains signed intervals O typically centered on 0. In the case
of LS, it would be R itself. The second can be reduced to the interval [0, 1] or
positive intervals centered on 1/2.

Suppose that there exists an admissible transfer function [25] between these two
kinds of sets: a strictly increasing (thus invertible) continuous function � : O →
[0, 1]. Figure 2 presents an example of a transfer function. Monotonicity provides
a convenient mapping of the classes between the two kinds of possible outputs of a
classifier, as the more “probable” the membership probability to the positive class
and the larger (and positive) the real value, and reciprocally. For this reason, we
use the transfer function to compute a discrepancy between two predictions, as
the area depicted in Figure 2. This discrepancy is called an integral loss.

Definition 1. The integral loss with parameter � between two predictions y and
y′ in [0, 1] is:

��
R
(H, H ′) .=

∫ H′

H

(�(x) − y)dx , (12)

with H
.= �−1(y) and H ′ .= �−1(y′).
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H ′

�(x)

y

H

y′

∫ H ′
H (�(x) − y)dx

Fig. 2. The loss as computed in (12) for transfer function �

logit−1 is an example of a transfer function (6). The rightmost column of Table
2 presents other examples of transfer functions. Figure 3 shows that the 0/1
loss is not an integral loss, but a limit case, considering that the integrals can
be computed from limit histograms and the 0/1 loss is the simplest non-trivial
case of histogram. Figure 2 displays an invariance of the integral loss which is
particularly convenient for classification. Indeed, because � is invertible, we have:

��
R
(H, H ′) =

∫ y

y′
(�−1(x) − H ′)dx = �

(�−1)
R

(y′, y) . (13)

Both integrals in eq. (12) and (13) can be rephrased as follows, if we denote
ψ

.=
∫

� and ψ� .=
∫

�−1:

��
R
(H, H ′) = ψ(H ′) − ψ(H) − (H ′ − H)�(H)

= ψ�(y) − ψ�(y′) − (y − y′)�−1(y′)

= �
(�−1)
R

(y′, y) .

Integral losses coincide with a particular kind of distortion measure: Bregman
Loss Functions [3].

Definition 2. For any strictly convex function ψ : X → R defined over a closed
interval X of R, differentiable over the opened interval, the Bregman Loss Func-
tion (BLF, [3]) Dψ with generator ψ is:

Dψ(x||x′) .= ψ(x) − ψ(x) − (x − x′)∇ψ(x′) , (14)

where ∇ψ denotes the first derivative of ψ.
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0
-1

H H ′

�0/1(y∗, H(x))

1

1y

y′ 1x≥0

Fig. 3. The 0/1 loss is a limit case of integral loss for function 1x≥0, and real-valued
classifiers that can only take on values in {−1, 1}

The parameter � in the integral loss is thus the derivative of the BLF generator.
We also make use of a vector-based notation for BLFs, and it shall mean a
component-wise sum of BLFs, such as:

Dψ(a||b) =
∑

i

Dψ(ai||bi) . (15)

BLFs define a subset of a set of distortion measures with interesting geometric
features: Bregman divergences [8].

Definition 3. For any strictly convex function ψ : X → R defined over a closed
convex set X of R

m, and continuously differentiable over its relative interior, the
Bregman divergence Dψ with generator ψ is:

Dψ(x||x′) .= ψ(x) − ψ(x) − (x − x′)�∇ψ(x′) , (16)

where ∇ψ denotes the gradient of ψ.

Table 1 gives some examples of Bregman divergences. The first three are separa-
ble as they satisfy (15) [12]. Kullback-Leibler is convex in its both parameters,
while Itakura-Saito is not; the Squared Euclidean distance is symmetric — in
fact, Mahalanobis distortion is the only symmetric Bregman divergence [31].

In our context, it shall be useful to think the gradients as being admissible,
thus making it possible to extend the corrresponding Bregman divergences to
X

2, and not simply X times its relative interior. The invariance described in (13)
is captured with the following important notion.

Definition 4. For any strictly convex function ψ : X → R defined over a closed
convex set X of R

m, the Legendre transform ψ� of ψ is:

ψ�(x) .= sup
x′

{x�x′ − ψ(x′)} , (17)

where x belongs to the relative interior of X.
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Table 1. Examples of Bregman divergences (spd = symmetric positive definite)

ψ(x) Dψ(x||x′) Name∑
i xi log xi − xi

∑
i {xi log(xi/x′

i) − xi + x′
i} Kullback-Leibler∑

i − log xi

∑
i {(xi/x′

i) − log(xi/x′
i) − 1} Itakura-Saito∑

i x2
i

∑
i (xi − x′

i)
2 Squared Eucl. dist.

x�Σx (x − x′)�Σ(x − x′) Mahalanobis
(Σ spd)

(1/2)||x||2q (1/2)||x||2q − (1/2)||x′||2q − (x − x′)�∇ψ(x′) q-norm

= 1
2

[(∑
i |xi|q

)1/q
]2

∇ψ(x)i = σ(xi)|xi|q−1/||x||q−2
q (q > 1)

Because of the strict convexity of ψ, the analytic expression of the Legendre
transform becomes:

ψ�(x) .= x�∇−1
ψ (x) − ψ(∇−1

ψ (x)) . (18)

ψ� is also strictly convex and differentiable. There are two important results to
note, that easily follow from the identity ∇ψ = ∇−1

ψ� :

ψ�� = ψ ,

Dψ(x||x′) = Dψ�(∇ψ(x′)||∇ψ(x)) ,

and that latter equality is just a generalization of (13). To summarize, BLFs
have a strong analytical rationale to compute the losses of classifiers with dense
outputs like LS and DT. The 0/1 loss is a limit case of BLF.

3.2 Surrogate Losses and Classification Calibrated Losses

We now introduce a popular formalization for losses over real-valued classifiers.
A serious alternative to directly minimizing (7) is to rather focus on the mini-
mization of a surrogate risk [5] (surrogate, for short). This is a function ε(S, H)
as in (8) whose surrogate loss �(c, H(o)) satisfies

�0/1(c, H(o)) ≤ �(c, H(o)) .

Four surrogate losses are particularly important in supervised learning:

�exp
R

(y∗, H) .= exp(−y∗H) , (19)
�log

R
(y∗, H) .= log(1 + exp(−y∗H)) , (20)

�sqr
R

(y∗, H) .= (1 − y∗H)2 , (21)
�hinge

R
(y∗, H) .= max{0, 1 − y∗H} . (22)

(19) is the exponential loss, (20) is the logistic loss, (21) is the squared loss and
(22) is hinge loss. The first three are examples of strictly convex losses; all are
plotted in Figure 4.
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�squ(y∗, H(x))

�0/1(y∗, H(x))

�exp(y∗, H(x))

�log(y∗, H(x))

y∗H(x)

Fig. 4. The surrogate losses in (19), (20), (21) versus the 0/1 loss

Definition 5. A Strictly Convex Loss ( scl) is a strictly convex function ψ :
X → R+ differentiable on the opened interval and such that ∇ψ(0) < 0, with X

centered on zero.

Once again, it shall be useful to think of the derivative as being admissible.
There is an immediate link between the 0/1 loss and any scl, as dividing the
scl by ψ(0) > 0 immediately yields an upperbound of the 0/1 loss. Thus, any
efficient machinery to minimize the surrogate yields an indirect minimization of
the empirical risk.

We now explain the rationale of scl, and in particular its importance for
classification. Following [5], we first define classification calibrated losses (ccl).
Suppose that all examples in S have the same observation, o, and the two classes
are in proportion η for the positive class, and 1 − η for the negative class. Any
general surrogate εR with surrogate loss �R simplifies over this sample and can
be written:

εR(η, H) .= η�R(H) + (1 − η)�R(−H) , (23)

where H is a real constant prediction. Classification calibration requires that,
for any η �= 1/2, the minimal risk is smaller than the minimal risk in which we
require H to be of a different sign than 2η − 1. More precisely, �R belongs to
classification calibrated losses (ccl) iff:

ε+
R
(η) < ε−

R
(η) , ∀η �= 1/2 , (24)

ε+
R
(η) .= inf

H
εR(η, H) ,

ε−
R
(η) .= inf

H:H(2η−1)≤0
εR(η, H) . (25)
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Table 2. Correspondence between permissible functions, the corresponding bcls and
the transfer functions

φ(x) aφ im(∇φ) Fφ(y∗H) P̂rφ[c = c+|H ; o]
⊇ im(H) = (φ�(−y∗H) − aφ)/bφ = ∇−1

φ (H)

(27) μ R
1

1−μ

(
−y∗H +

√
(1 − μ)2 + (y∗H)2

)
1
2

(
1 + H/

√
(1 − μ)2 + H2

)

(28) 0 R −y∗H +
√

1 + (y∗H)2 1
2

(
1 + H/

√
1 + H2

)

(29) 0 R log(1 + exp(−y∗H)) exp(H)/(1 + exp(H))
(26) 0 [−1, 1] (1 − y∗H)2 1

2 (1 + H)

In our setting, quantity 2η − 1 ∈ [−1, 1] is the inverse of the transfer function
for the following convex function:

ψ = φB(x) .= −x(1 − x) . (26)

We could have replaced this transfer function by many other examples, like for
example logit in (6). We use this particular case because (25) is the original
definition of classification calibrated losses of [5]. Furthermore, (26) is to play an
important role later.

To summarize, condition H(2η − 1) ≤ 0 in (25) imposes H to be an overall
wrong real prediction on S. Thus, condition (24) states that from the efficient
minimization of the surrogate necessarily follows the most accurate prediction of
the classes, for every observation. Failing to meet this weak condition would make
the surrogate meaningless for classification purposes. It follows from [5], Theorem
4, that scl⊂ccl, spanning all strictly convex differentiable and classification
calibrated losses, such as (19), (20), (21).

So far, we have defined two main classes of losses, integral losses with some
analytical rationale, and strictly convex losses with some classification rationale.
There seems to be a visual difference between these two classes of losses, as the
former distinguish class y and prediction H as different parameters, while the
latter aggregate y∗ and H in a single parameter, y∗H which can be called an
edge (see e.g. (19) — (22)). The following section shows that this difference is
essentially superficial.

3.3 Balanced Convex Losses

Let us adopt a principled approach on what should be a “good” loss function for
classification. Ne need to import the main three assumptions that underlie classi-
fication losses in a majority of works in supervised learning. These assumptions,
stated for im(H) ⊆ [0, 1] without loss of generality, are:

(A1) The loss is lower-bounded by 0. We have:

�[0,1](., .) ≥ 0 .
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(A2) The loss is a proper scoring rule. Consider a singleton domain O = {o}.
Then, the best (constant) prediction is:

arg min
H∈[0,1]

ε[0,1](S, H) = η
.= P̂r[c = c+|o] ∈ [0, 1] ,

where p is the proportion of positive examples with observation o.
(A3) The loss is symmetric in the following sense:

�[0,1](y, H) = �[0,1](1 − y, 1 − H), ∀y ∈ {0, 1}, ∀H ∈ [0, 1] .

Lower-boundedness in A1 is standard. For A2, we can equivalently write an
analogue of (23) for [0, 1] classifiers:

ε[0,1](S, H) = ε[0,1](η, H) = η�[0,1](1, H) + (1 − η)�[0,1](0, H) ,

which is just the expected loss of zero-sum games used in [18] (eq. (8)) with
Nature states reduced to the class labels. The fact that the minimum is achieved
at H = η makes the loss a proper scoring rule. η also defines Bayes classifier, i.e.
the one which minimizes the 0/1 loss [2]. A3 scales to H ∈ [0, 1] a well-known
symmetry in the cost matrix that holds for domains without class dependent
misclassification costs. This 2 × 2 matrix, L, gives

lij
.= �(i − 1, j − 1)

for any values (i, j) ∈ {1, 2}2. Usually, it is admitted that �(1, 1) = �(0, 0), i.e.
right classification incurs the same loss regardless of the class. Generally, this
loss is zero. Problems without class-dependent misclassification costs, on which
focus the vast majority of theoretical studies, also make the assumption that
�(1, 0) = �(0, 1). Assumption A3 scales theses two properties to H ∈ [0, 1]. We
now extend a terminology due to [23]

Definition 6. A function φ : [0, 1] → R+ is permissible iff −φ is differentiable
on (0, 1), strictly concave, symmetric about x = 1/2, and with −φ(0) = −φ(1) .=
aφ ≥ 0.

Hereafter, φ refers to a permissible function. Once again, it shall be useful to
think of the derivative of φ as being admissible (assuming the logit closure we
make in Subsection 2.1, all permissible functions are admissible). Definition 6
relies on −φ rather than φ because −φ is the function generally used, as it
spans e.g. a subset of the generalized entropies [18], or it represents the function
actually used for the induction of some classifiers including DT (see Section
6) [19,23]. For all popular permissible φ, we have aφ = 0 [23]. We let bφ

.=
−φ(1/2) − aφ > 0. In addition to (26), below are more examples of permissible
functions φ, that have been arranged from the bottom-most to the topmost
function (when scaled so that φ(1/2) = −1).

φμ(x) .= −(μ + (1 − μ)
√

x(1 − x)) , ∀μ ∈ (0, 1) . (27)
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Fig. 5. The permissible functions in (26), (27), (28), (29)

φM(x) .= −
√

x(1 − x) , (28)
φQ(x) .= x log x + (1 − x) log(1 − x) , . (29)

When scaled so that φ(1/2) = −1, most confound with the opposite of popular
choices: Gini index for (26) [9], Bit-entropy for (29) [34], and Matsushita’s error
for (28) [23,27]. Figure 5 plots these permissible functions. Finally, we say that
loss �[0,1] is properly defined iff dom(�[0,1]) = [0, 1]2 and it is twice differentiable
on (0, 1)2. This last definition is only a technical convenience: even the 0/1 loss
coincides on {0, 1} with properly defined losses. In addition, the differentiability
condition would be satisfied by many popular surrogates. Hinge loss (22) is a
notable exception, yet it plays a key role in the properties of balanced convex
surrogates, for which the following Lemma is central.

Lemma 1. Any loss �[0,1](., .) is properly defined and satisfies assumptions A1,
A2 and A3 if and only if

�[0,1](y, H) = Dφ(y||H) ,

for some permissible function φ.

Proof: (⇐) Assumption A3 follows from the strict concavity and symmetry
of −φ. Assumptions A1 and A2 follow from usual properties of BLFs [3]. (⇒)
Without assumption A3, �[0,1](y, H) is a BLF [3], Dφ(y||H) for some strictly
convex function φ, differentiable on (0, 1). Modulo rearrangements in assumption
A3, we obtain

∇φ̃(H) = (φ̃(H) − φ̃(y))/(H − y), ∀y, H ∈ [0, 1] ,

with φ̃(x) = −φ(1 − x) + φ(x). It comes that φ̃(x) = ax + b for some a, b ∈ R.
Since φ̃(1 − x) = −φ̃(x), we easily obtain a = b = 0, i.e. φ(x) = φ(1 − x).
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Fig. 6. Plot of �(y,H) = Dφ(y||H) (Lemma 1) for φ = φM(x) in (28) and y, H ∈ [0, 1]

Ultimately, since a BLF Dφ(y||H) does not change by adding a constant term
to φ, we can suppose without loss of generality that φ(0) = φ(1) = −aφ ≤ 0,
which makes that φ is permissible.

φ is thus the “signature” of the loss. We insist on the fact that we could have re-
placed A1 by a simple lower-boundedness condition without reference to zero, in
which case from Lemma 1 the loss would be a BLF plus a constant factor, with-
out impact on the structural or minimization properties that are to come. Using
Lemma 1, Figure 6 depicts an example of �(y, H) for φ as in (28). Permissible
functions are useful to define the following subclass of scl, of particular interest

Definition 7. Let φ permissible. The Balanced Convex Loss (bcl) with signa-
ture φ, Fφ, is:

Fφ(x) .= (φ�(−x) − aφ)/bφ . (30)

Balanced Convex Surrogates (bcs) are defined accordingly as sums of bcl:

εφ
R
(S, H) .=

∑

i

Fφ(y∗
i H(oi)) . (31)

All bcl share a common shape. Indeed, φ�(x) satisfies the following relationships:

φ�(x) = φ�(−x) + x , (32)
lim

x→infim(∇φ)
φ�(x) = aφ . (33)

Noting that Fφ(0) = 1 and ∇Fφ
(0) = −(1/bφ)∇−1

φ (0) < 0, it follows that bcs ⊂
scs, where the strict inequality comes from the fact that (19) is a scl but not
a bcl. It also follows
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Fig. 7. Bold curves depict plots of φ�(−x) for the φ in (26), (27), (28), (29); thin dotted
half-lines display parts of its asymptotes

lim
x→supim(∇φ)

Fφ(x) = 0 from (33) ,

lim
x→infim(∇φ)

Fφ(x) = −x/bφ from (32) .

We get that the asymptotes of any bcl can be summarized as

�(x) .= x(σ(x) − 1)/(2bφ) . (34)

When bφ = 1, this is the linear hinge loss [16], a generalization of (22) for which
x

.= y∗H − 1. Thus, while hinge loss is not a bcl, it is the limit behavior of
any bcl. Figure 7 presents examples of bcl. Figure 8 presents the inverse of the
transfer functions for the same φ as in Figure 7. The additional sigmoid curve
indexed by variable ζ, is for a permissible φζ as follows (∀ζ ∈ R−,∗):

φζ(x) .= −2
ζ

log cosh
(

ζ

2

(
x − 1

2

))
. (35)

When properly scaled, this permissible function is located in between 2φB in (26)
and − min{x, 1−x} (and strictly in between for x �= 0, 1/2, 1) — in this last case,
the corresponding transfer function converges to the 0/1 loss. Tuning ζ ∈ R−,∗
makes the function span all the available area. It was chosen to show that there
can be different concave/convex regimes for ∇φ. Since dom(Fφ) = im(∇φ), there
are also much different domains for the bcls.

The following Lemma states some relationships that are easy to check using
ψ�� = ψ. They are particularly interesting when im(H) = O ⊆ R.
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Fig. 8. Plots of ∇φ for the same φ as in Figure 7, plus an additional one that displays
a particular regime (see text for details)

Lemma 2. For any scl ψ,

ψ(y∗H) = Dψ�(0||∇−1
ψ� (y∗H)) − ψ�(0) . (36)

Furthermore, for any bcl Fφ,

Dφ(y||∇−1
φ (H)) = bφFφ(y∗H) , (37)

= Dφ(1||∇−1
φ (y∗H)) . (38)

Finally, for any scl ψ, there exists a functions ϕ such that

Dϕ(y||∇−1
ϕ (H)) = ψ(y∗H) (39)

iff the restriction of ψ�(−x) to the interval ∇−1
ψ ([−1, 0]) is permissible.

Proof: The equalities are straightforward to check, so we concentrate on the
last property, that we only have to check for the implication ⇒. We note that:

Dϕ(y||∇−1
ϕ (H)) = ϕ(y) + ϕ�(H) − yH . (40)

Making the difference of (39) for y = 0 and y = 1 yields ψ(H) = ψ(−H) − H +
(ϕ(1) − ϕ(0)), i.e. ϕ(0) = ϕ(1) (obtained with H = 0). Differentiating (39) =
(40) in H for y = 0 yields ∇ϕ�(x) = −∇ψ(−x), i.e. ϕ(x) = ψ�(−x) + K. We
easily obtain ∇ϕ(1/2) = 0 and ∇ϕ(x) = −∇ϕ(1 − x), i.e. ϕ is permissible.

To summarize, up to additive constants that play no role in their minimization,
integral losses and strictly convex losses coincide; they are just different writings
of the same losses, that can be used as an efficient primer for the minimization
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of the 0/1 loss. Both match a wide subset of classification calibrated losses, and
contain a set called balanced convex losses. In addition to the analytical and
classification rationales of its supersets, bcl coincides with losses that match
A1 — A3. The transfer function defines the signature of the loss, a crucial part
of the loss. The following Subsection shows that bcl has another rationale which
ties its minimization to maximum likelihood estimation for popular families of
densities, whose members are precisely parameterized by the signature of the
loss.

3.4 Balanced Convex Losses and Exponential Families of
Distributions

(37) tells us that the transfer function as used in Figure 2 is in fact the inverse
of the permissible function’s gradient (∇−1

φ ) in a bcl. This provides us with an
estimator of the membership probability to the positive class, if H is such that
im(H) = O:

P̂rφ[c = c+|H ; o] .= ∇−1
φ (H(o)) . (41)

We can shed some statistical light in the estimation given in (41), illustrated
in Table 2 (rightmost column). This exploits famous distributions known as the
exponential families of distributions [30]. Prominent members include Bernoulli
(multinomial), normal, Poisson, Laplacian, negative binomial, Rayleigh,
Wishart, Dirichlet, and Gamma distributions, but we shall only need a subset
which turns out to be in bijection with the set of all bcls. More precisely, using
the general bijection between BLFs and the exponential families of distributions
of [4], there exists through eq. (36) a bijection between the set of bcl and a
subset of these exponential families whose members’ pdfs may be written:

Prφ[y|θ] = exp(−Dφ(y||∇−1
φ (θ)) + φ(y) − ν(y)) ,

where θ ∈ R denotes the natural parameter of the pdf, and ν(.) is used for
normalization. Plugging θ = H(o), using (36) and (41), we obtain that any
bcs (31) can be rewritten as:

εφ
R
(S, H) = u +

∑

i

− log P̂rφ[yi|H(oi)] ,

where u does not play a role in the minimization of the bcs with H . We obtain
the following Lemma, in which we suppose again im(H) = O.

Lemma 3. Minimizing any bcs with classifier H yields a maximum likelihood
estimation, for each observation o, of the natural parameter θ = H(o) of an
exponential family defined by signature φ.

Real-valued hypotheses like linear separators may thus be viewed as estimating
the natural parameters; by duality, classifiers that are able to fit [0, 1] values, like
decision trees, would rather be considered estimating the expectation parameters
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of the corresponding exponential families, i.e. obtained via the transfer function,
∇−1

φ (θ) (Subsection 3.1).
To end up, only one exponential family is in fact concerned in our setting.

Assuming y ∈ {0, 1}, the pdf simplifies and we end up with

Prφ[y|θ] =
1

1 + exp(−θ)
,

the logistic prediction for a Bernoulli prior. To summarize, minimizing any sur-
rogate whose loss meets A1, A2 and A3 (i.e. any bcs) amounts to the same
ultimate goal. The crux of the choice of the bcs mainly relies on algorithmic and
data-dependent considerations for its efficient minimization.

3.5 Margins

It has been soon remarked in machine learning that the output of classifiers
returning real values is useful beyond its thresholding via functions σ or τ (Sub-
section 2.1). In fact, we can also retrieve a measure of its “confidence” [36].
For example, when im(H) = O, it can be its absolute value [36]. Intuitively,
learning should aim at providing classifiers that decide right classes with large
confidences. Integrating both notions of class and confidence in criteria to op-
timize was done via margins [33,35]. Informally, the (normalized) margin of H
on example (o, y∗), μH((o, y∗)), takes value in [−1, 1]; it is positive only when
the class assigned by H is the right one, and its absolute value quantifies the
confidence in the classification. Different definitions of margins coexist, each of
which tailored to a particular kind of classifier, with a particular kind of outputs:
for example, in the case of linear separators, we may have [36,35]:

μH((o, y∗)) .=
y∗ ∑

t αtht(o)∑
t αt

.

Lemma 2 suggests a general and simple margin definition that we state for
im(H) = O and any permissible φ. Fix:

μH((o, y∗)) .= 2∇−1
φ (y∗H(o)) − 1 . (42)

Eq. (42) is just a scaling of the transfer function to interval [−1, 1]. When φ
is chosen as in (29), (42) simplifies to the margin adopted in [33] for linear
separators. The link between the maximization of margins as in (42) and loss
minimization comes from Lemma 2. Indeed, (38) states that the minimization of
any loss that meet A1, A2, A3 is equivalent to margin maximization. Finally,
since φ is permissible, (41) yields:

μH((o, y∗)) = y∗(2P̂rφ[c = c+|H ; o] − 1) ∈ [−1, 1] . (43)

(43) shows that the margin simplifies to a quantity homogeneous to an edge as
defined in Subsection 3.2, for any permissible φ. This is convenient for experi-
ments, as we can make fair comparisons between margins for different φ.
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||xt − xt+1||22 Dψ(xt+1||xt)

xt+1

Fig. 9. The ordinary gradient (left), Amari’s natural gradient and our geodesic walk
(right) make that xt is moved along a curve orthogonal to the Bregman ball defined
by the constraint in (44) for the corresponding Bregman divergence (see text)

4 Bregman Geometric Problems

In this Section, our iterative settings for learning shifts to a geometric problem in
which we move along a particular path in the closed convex set X of Definitions
2 and 3.

4.1 A Geodesic Walk

We are going to build in an iterative fashion elements xt, t = 1, 2, ...T , and seek
them so as to progressively minimize a function ϑ(x), under the constraint that
the step length κt > 0 is of fixed size, and this size is measured with a Bregman
divergence Dψ. More formally, we want:

xt+1 = argmin
x∈X

ϑ(x) s.t. Dψ(x||xt) = κt , ∀t = 1, 2, .... (44)

Lemma 4. The solution to (44) is

xt+1 = ∇−1
ψ

(
∇ψ(xt) − 1

λ(κt)
∇ϑ(xt)

)
, (45)

for some λ(κt) ∈ R∗.

Proof: Write x
.= xt +εa for some sufficiently small constant ε. Then we search

for the a which minimizes:

ϑ(x) = ϑ(xt) + ε∇�
ϑ (xt)a , (46)

and the constraint becomes:

Dψ(xt + εa||xt) = ψ(xt + εa) − ψ(xt) − ε∇�
ψ (xt)a = κt . (47)

The stationarity conditions of the Lagrangian give us after differentiating by a
∇ψ(xt+εa) = ∇ψ(xt)−(1/λ)∇ϑ(xt) (λ is the constraint’s Lagrange multiplier),
i.e. the statement of the Lemma.
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Lemma 4 provides us with a geodesic walk to the minimization of function ϑ(x)
[31,30], namely:

xt+1 = ∇−1
ψ (∇ψ(xt) − ηt∇ϑ(xt)) , (48)

where ηt is a learning rate [1,25]. This geodesic walk works only if the domains
of ϑ and ψ are compatible, which shall be the case in what follows. Lemma 4
brings a generalization of Amari’s natural gradient [1]. To see this, take Dψ as
Mahalanobis distortion (Table 1). Then (48) simplifies and we obtain that the
steepest descent direction a satisfies :

a = Σ−1∇ϑ(xt) .

This is a general form of Amari’s natural gradient defined on Riemannian spaces.
Lemma 4 tells that Amari’s seminal notion may be generalized to a non-metric
space embedded with a general Bregman divergence. The solution to (44) moves
along a curve orthogonal to the ball defined by the constraint, where the orthog-
onality uses the Bregman-Pythagoras Theorem of Subsection 4.2 [30,31] (see
Figure 9). For the sake of simplicity, we write

u � p
.= ∇−1

ψ (∇ψ(p) + u) ,

where ψ becomes implicit and clear from context; also, we call u�p the Legendre
dual of the ordered pair (u, p). The Legendre dual satisfies:

∇ψ(u � p) = ∇ψ(p) + u , (49)
u � (u′ � p) = (u + u′) � p , ∀u, u′ ∈ ∇ψ(X), ∀p ∈ X . (50)

The construction of the Legendre dual can be explained in a simple way, as
depicted in Figure 10 when ψ = φ is a permissible function (Definition 6).

Here is how we use the geodesic walk of Lemma 4. xt refers to an object that
we update to learn. This object, which has historically been called w rather
than x since it refers to “weights”, belongs to a set that we should denote W

rather than X. This object is different in boosting and on-line learning: in on-line
learning, it refers to the classifiers Ht (t = 0, 1, ...), while in boosting, it refers
to the learning sample S, and more precisely, weights wt that are put on the
examples. For the boosting part, we define m × T matrix M with

mit
.= −y∗

i ht(oi) . (51)

Given leveraging coefficients vector α ∈ R
T for classifier H , we thus get:

− y∗
i H(oi) = (Mα)i . (52)

In this case, ϑ(wt) is the edge of the classifier (a generalization of the notion
previously defined in Subection 3.2):

ϑ(wt)
.= −w�

t Mα , (53)
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Fig. 10. Construction of the Legendre dual u�p for some permissible φ. ∇φ is symmetric
around point (1/2, 0), for any permissible φ.

and we get

∇ϑ(wt) = ∇ϑ(α) = −Mα . (54)

In on-line learning, we shall consider for the sake of simplicity only linear separa-
tors as classifiers. Thus, we let Ht(o) .= w�

t o, t = 0, 1, ..., and consider a general
bcl as in (37); in our on-line learning context (10), ϑ refers to the bcl over the
current example, and we get:

ϑ(wt−1)
.= Dφ(yt||∇−1

φ (w�
t−1ot)) . (55)

We obtain:

∇ϑ(wt−1) = ∇ϑ(wt−1, ot, yt) = (∇−1
φ (w�

t−1ot) − yt)ot . (56)

4.2 A Bregman-Pythagoras Theorem

The following Lemma states a fundamental property on Bregman divergences.

Lemma 5. For any elements u, x, x′ such that (x′−u)�(∇ψ(x)−∇ψ(x′)) = 0,
we have:

Dψ(u||x) = Dψ(u||x′) + Dψ(x′||x) . (57)
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Fig. 11. An illustration of Bregman-Pythagoras theorem

The proof of this Lemma is immediate once we remark the three-points property:

Dψ(u||x) = Dψ(u||x′) + Dψ(x′||x) + (x′ − u)�(∇ψ(x) − ∇ψ(x′)) . (58)

Lemma 5 gives us a generalization of Pythagoras theorem, that we retrieve with
the squared Euclidean distance (Table 1). In the literature, some more sophis-
ticated generalizations of Pythagoras theorem have been published [20,30]. The
one we propose in Lemma 5 is sufficient for our purpose. Figure 11 gives a
schematic view of Bregman-Pythagoras theorem.

4.3 An Optimisation Problem Associated to the Geodesic Walk

There is an interesting problem related to the geodesic walk, which relies on a
point x0 of X and the subset of X which may be reached through geodesic walks
starting from x0. As this problem is particularly interesting for boosting, we use
the boosting formulation for ∇ε in (54). The set is:

X0
.= {Mα � x0 : α ∈ R

m} . (59)

The problem we want to solve is:

x� = arg min
x∈X0

Dψ(x1||x) , (60)

for some x1 ∈ X. Here, X0 is the closure of X0. There is a dual and “orthogonal”
optimization problem of interest, namely:

x� = arg min
x∈X1

Dψ(x||x0) , (61)
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Dψ(x′||x)
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x

Fig. 12. Illustration of Lemma 6: the solutions of (60) and (61) naturally emerge as a
consequence as the Bregman-Pythagoras orthogonality of X0 and X1.

where

X1
.= {x ∈ X : Mx = Mx1} . (62)

What is particularly interesting is when X0 ∩ X1 �= ∅, a condition which would
not necessarily hold without the closure of X0 (for the technical reasons, we refer
to [10]). Provided the intersection is not empty, we let:

x01 ∈ X0 ∩ X1 . (63)

We have an interesting four-points property met by any Bregman divergence:

Dψ(x′
a||xa) − Dψ(x′

a||xb) − Dψ(x′
b||xa) + Dψ(x′

b||xb)
= (x′

a − x′
b)

�(∇ψ(xb) − ∇ψ(xa)) , ∀xa, xb, x
′
a, x′

b ∈ X . (64)

Take xa, xb ∈ X0. We obtain:

(x′
a − x′

b)
�(∇ψ(xb) − ∇ψ(xa))

(59)
= (x′

a − x′
b)

�(Mαb − Mαa)
= (αb − αa)�(Mx′

a − Mx′
b) , (65)

and if we make the additional assumption that x′
a, x

′
b ∈ X1 (62), then (65) is

zero. If we take xa = x′
a = x01, then we obtain the following Lemma.
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Lemma 6. Dψ(x′||x) = Dψ(x′||x01) + Dψ(x01||x), ∀x ∈ X0, ∀x′ ∈ X1.

This Lemma, illustrated in Figure 12, gives us the solutions of both (60) and
(61).

Lemma 7. x01 = x�, the solution of (60) and (61).

Proof: Take any x ∈ X0 and x′ = x1 in Lemma 6: we obtain Dψ(x1||x) =
Dψ(x01||x)+ Dψ(x1||x01) ≥ Dψ(x1||x01), with equality iff x = x01. Hence, x01
is the solution to (60). The same reasoning with x′ ∈ X1 and x = x0 in Lemma
6 yields the same result for (61).

Thus, the optimization problems in (60) ad (61) reduce to finding an element in
the intersection of X0 and X1. Figure 12 provides us with a graphical interpre-
tation of Lemma 7.

5 Applications on Linear Separators

5.1 Boosting

Here is the way we assemble the geometric pieces of Section 4 to devise a general
boosting algorithm for LS. We keep our notations in (51) for matrix M, and
show how to minimize any scs

εψ
R
(S, H) .=

∑

i

ψ(y∗
i H(oi)) , (66)

for any scl ψ with dom(ψ) = R. This assumption on the domain of ψ is not
restrictive for LS, as otherwise it would make it necessary to truncate the outputs
of the LS to remain within the domain, and it is known that such procedures
present significant masking problems [14]. For some bcl, we may be forced to
give up with the bcl regime to make the fitting, at the expense of the lost of the
direct relationships with the maximum likelihood fitting explained in Subsection
3.4. For example, we can use (21), but it is necessary to get out of the bcl regime
and work in R instead of [−1, 1].

To simplify notations, we let:

ψ̃(x) .= ψ�(−x) . (67)

With this notation, (36) becomes:

ψ(y∗H) = Dψ̃(0||∇−1
ψ̃

(−y∗H)) − ψ̃(0) . (68)

We let W
.= dom(∇ψ̃) = −im(∇ψ), where this latter equality comes from

∇ψ̃(x) = −∇ψ�(−x) = −∇−1
ψ (−x). It also comes im(∇ψ̃) = R. Algorithm

ULS provides us with a general induction scheme for LS, whose properties hold
regardless of the scl at hand. The step which is not explained in the algorithm
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Algorithm 1: Algorithm ULS(M, ψ)
Input: M ∈ R

m×T , scl ψ with dom(ψ) = R;
Let α1 ← 0;
Let w0 ← ∇−1

ψ̃
(0)1;

for j = 1, 2, ...J do
//Weight Update: make a geodesic walk on Dψ̃ to minimize ϑ = edge (53)

wj ← (Mαj) � w0 ; (69)

Let Tj ⊆ {1, 2, ..., T};
Let δj ← 0;
//Leveraging Coefficients: ensure Bregman-Pythagoras Theorem on weights

∀t ∈ Tj , pick δj,t such that :
m∑

i=1

mit((Mδj) � wj)i = 0 ; (70)

Let αj+1 ← αj + δj ;

Output: H(o) .=
∑T

t=1 αJ+1,tht(o) ∈ LS

is the choice of the set of indices Tj on which we compute the leveraging coeffi-
cients of the features. In fact, this step does not really belong to ULS: ever since
the seminal works on boosting [21], this step has mostly been the retrieval, by
a weak learner, of a single weak classifier — called feature here because every-
thing is like if it were mapping each observation to a new real variable which
is used to build the final LS. Thus, we can suppose for the moment that this
choice is assumed by the weak learner, and we shall discuss it later. Through the
more recent works on boosting, the choice of Tj has come with various flavors:
in classical boosting, at step j, we would fit a single αt [10]; in totally corrective
boosting, we would rather fit {αt, 1 ≤ t ≤ j} [39]. Intermediate schemes may be
used as well for Tj , provided they ensure that, at each step j of the algorithm
and for any feature ht, it may be chosen at some j′ > j. ULS is displayed in
Algorithm 1. In Algorithm 1, Tj may be chosen according to whichever scheme
underlined above.

The following Theorem provides a first general convergence property for ULS.

Theorem 1. The output of ULS(M , ψ) converges to a classifier H� realizing:

H� = arg min
H∈LS

εψ
R
(S, H) . (71)

Proof: In (69), (50) brings wj+1 = (Mαj+1)�w0 = (Mδj)�wj . We thus have:

Dψ̃(0||wj+1) − Dψ̃(0||wj) = −[ψ̃((Mδj) � wj) − ψ̃(wj) + w�
j ∇ψ̃(wj)]

+((Mδj) � wj)�∇ψ̃((Mδj) � wj) . (72)
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Because of (49), (72) is just (for short, r
.= ((Mδj) � wj)�∇ψ̃(wj)):

((Mδj) � wj)�∇ψ̃((Mδj) � wj) = r + ((Mδj) � wj)�Mδj

= r −
m∑

i=1

y∗
i

T∑

t=1

δj,tht(oi)((Mδj) � wj)i

= r −
T∑

t=1

δj,t

m∑

i=1

y∗
i ht(oi)((Mδj) � wj)i

= r +
T∑

t=1

δj,t

m∑

i=1

mit((Mδj) � wj)i

︸ ︷︷ ︸
bt

= r . (73)

(73) holds because δj,t = 0, or bt = 0 from the choice of δj,t in (70). We obtain:

Dψ̃(0||wj+1) − Dψ̃(0||wj) = −Dψ̃(wj+1||wj) . (74)

This is Bregman-Pythagoras Theorem on weights (Lemma 5). This relationship
is fundamental for the proof. Indeed, it comes from (68) and (69) that:

εψ
R
(S, Hj) = Dψ̃(0||wj) − mψ̃(0) = Dψ̃(0||wj) + const . (75)

Thus, (74) is the difference between two successive scs, a measure of the progress
to the limit classifier. Since any scs is lowerbounded and the right-hand side of
(74) cannot be strictly positive, ULS must converge, and so there remains to
characterize the classifier obtained after convergence, i.e. when wj = wj+1.
Take

x0
.= ∇−1

ψ̃
(0)1 in (61) , (76)

X0
.= W in (59) . (77)

x1
.= 0 in (60) , (78)

X1
.= {α ∈ R

m : M�α = M�x1 = 0} = KerM� in (62) , (79)

Problem (60) can thus be rewritten as w� = argminw∈W
Dψ̃(0||w), or equiva-

lently, with (75), as:

H� = arg min
H∈LS

εψ
R
(S, H) . (80)

The geodesic walk in (69) and (70) ensures:

1�
Tj

M�wj+1 = 0 , (81)

where 1Tj is the Boolean vector with ones on the indexes of Tj . After convergence,
Mδj = 0 for any Tj , and hence the corresponding vector wj+1 is such that (81)
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X1 = KerM�

X0 = W

wt

wt+1

x0 = w0 = ∇−1
ψ̃

(0)1

x1 = 0 x01 = w∞

Fig. 13. A schematic view of how ULS behaves: iterating geodesic walks make the
weight vector converge to the null space of M�, and the classifier H converges to the
optimum of the surrogate risk εψ

R
(S ,H) (see text)

holds regardless of the choice of 1Tj . Taking (81) for each possible singleton
index in Tj , we obtain that, after convergence:

M�wj+1 = 0 ⇒ wj+1 ∈ KerM� . (82)

Hence, wj+1 = w�, the optimal solution to (60), and the corresponding classifier
we end up with is H�, the solution to (80).

We emphasize the fact that Theorem 1 proves the convergence towards the global
optimum of εψ

R
, regardless of ψ. The optimum is defined by the LS with features

in M that realizes the smallest εψ
R
. Figure 13 displays the way ULS behaves. The

Bregman ball around wj shows the geodesic walk made in step (69) to compute
wj+1 by nullifying the current edge of the features selected in Tj . Notice that in
practice, it may be a tedious task to satisfy exactly (74), in particular for totally
corrective boosting [39]. ULS has the flavor of boosting algorithms repeatedly
modifying a set of weights w over the examples, the most popular algorithm
being AdaBoost [13].

In fact, this similarity is more than syntactical, as ULS satisfies two first
popular algorithmic boosting properties, the first of which being (70) which
implies (81): after the computation of the leveraging coefficients, the next weights
are somehow decorrelated with the classes, if we refer to the zero edge. One may
wonder under which conditions (70) admits a solution. The following Lemma
shows that it always admit a finite solution when no “trivial” solution exist for
the minimization of the scs at hand.
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Lemma 8. Suppose that there does not exist some ht with all mit of the same
sign, ∀i = 1, 2, ..., m. Then, for any choice of Tj in ULS, (70) has always a finite
solution.

Proof: Let:

Z
.= Dψ̃(0||(Mαj+1) � w0) . (83)

We have

Z = mψ̃(0) +
m∑

i=1

ψ̃((M(δj + αj))i)

from (68), a function convex in all leveraging coefficients. Define |Tj |×|Tj | matrix
E with:

euv
.=

∂2Z

∂δj,u∂δj,v

(for the sake of simplicity, Tj = {1, 2, ..., |Tj|}, where |.| denotes the cardinal).
We have:

euv =
m∑

i=1

miumiv

ϕ(((Mδj) � wj)i)
,

with:

ϕ(x) .=
d2ψ̃(x)

dx2 , (84)

a function strictly positive in the relative interior of W since ψ̃ is strictly convex.
Let qi,j

.= 1/ϕ(((Mδj) � wj)i) > 0. It is easy to show that:

x�Ex =
m∑

i=1

qi,j(x�m̃i)2 ≥ 0 , ∀x ∈ R
|Tj| , (85)

with m̃i ∈ R
|Tj| the vector containing the entries mit with t ∈ Tj . Thus, E is

positive semidefinite; as such, (70), which is the same as solving ∂Z/∂δj,u = 0,
∀u ∈ Tj (i.e. minimizing Z) has always a solution.

The condition for the Lemma to work is absolutely not restrictive, as if such an
ht were to exist, we would not need to run ULS: indeed, we would have either
ε0/1(S, ht) = 0, or ε0/1(S, −ht) = 0.

We give three examples of specializations of ULS:

– take for example ψ(x) = exp(−x) (19). In this case, W = R+, w0 = 1 and
it is not hard to see that ULS matches real AdaBoost with unnormalized
weights [36]. The difference is syntactical: the LS output by ULS and real
AdaBoost are the same;



204 R. Nock and F. Nielsen

– now, take any bcl. In this case, ψ̃ = φ, W = [0, 1] (recall that we close W

in the same way as we did for the logit in Section 2.1), and w0 = 1/21. In all
these cases, where W ⊆ R+, wj is always a distribution up to a normalization
factor, and this would also be the case for any strictly decreasing scs ψ. The
bcl case brings an interesting display of how the weights behave through
the geodesic walk.
Figure 10 displays a typical Legendre dual for a bcl. Consider example
(oi, yi), and its weight update, wj,i ← (Mαj)i �w0,i = (−y∗

i H(oi))�w0,i for
the current classifier H . Fix p = w0,i and u = −y∗

i H(oi) in Figure 10. We see
that the new weight of the example gets larger iff u > 0, i.e. iff the example
is given the wrong class by H , which is the second boosting property met
by ULS;

– as a last example, take ψ(x) = (1 − x)2 in (21). In this case, as argued at
the beginning of Subsection 5.1, we leave the bcl regime to work with the
function defined over R instead of [−1, 1]. Since ∇−1

ψ̃
(x) = 2(1 − x), weights

actually span R itself, and the negative regime appears for x ≥ 1. This is
not surprising as the scl is increasing when x ≥ 1, and so minimizing it in
this region “reverses” the polarity of search with respect to the bcl regime.

ULS turns out to meet a third boosting property, and the most important as
it contributes to root the algorithm in the seminal boosting theory of the early
nineties: we have guarantees on its convergence rate under a generalization of
the well-known “Weak Learning Assumption” (WLA) [36]. To state the WLA,
we plug the iteration in the index of the distribution normalization coefficient in
(83), and define Zj

.= ||wj ||1 (||.||k is the Lk norm). The WLA is:

(WLA)∀j, ∃γj > 0 :

∣∣∣∣∣∣
1

|Tj |
∑

t∈Tj

1
Zj

m∑

i=1

mitwj,i

∣∣∣∣∣∣
≥ γj . (86)

This is indeed a generalization of the usual WLA for boosting algorithms, that
we obtain taking |Tj | = 1, ht ∈ {−1, +1} [33]. Few algorithms are known that
formally boost WLA in the sense that requiring only WLA implies guaranteed
rates for the minimization of εψ

R
. We show that ULS meets this property ∀ψ ∈

scl. To state this, we need few more definitions. Let mt denote the tth column
vector of M , am

.= maxt ||mt||2 and aZ
.= minj Zj . Let aγ denote the average

of γj (∀j), and aϕ
.= minx∈int(W) ϕ(x) (ϕ defined in (84)).

Theorem 2. Under the WLA, ULS reaches the minimum of the surrogate risk
εψ

R
(S, H) in

J = O
(

ma2
m

aϕa2
Za2

γ

)
(87)

iterations.

Proof: We use Taylor expansions with Lagrange remainder for ψ̃, and then
the mean-value theorem, and obtain that ∀w, w + Δ ∈ W, ∃w� ∈ [min{w +
Δ, w}, max{w + Δ, w}] such that:
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Dψ̃(w + Δ||w) = Δ2ϕ(w�)/2 ≥ (Δ2/2)aϕ ≥ 0 . (88)

We use m times this inequality with w = wj,i and Δ = (wj+1,i − wj,i), sum
the inequalities, combine with Cauchy - Schwartz and Jensen’s inequalities, and
obtain:

Dψ̃(wj+1||wj) ≥ aϕ

(
aZγj

2am

)2

. (89)

Using (74), we obtain that Dψ̃(0||wJ+1) − mψ̃(0) equals:

−mψ̃(0) + Dψ̃(0||w1) +
J∑

j=1

(Dψ̃(0||wj+1) − Dψ̃(0||wj))

= mψ(0) −
J∑

j=1

Dψ̃(wj+1||wj) . (90)

But, (68) together with the definition of wj in (69) yields

Dψ̃(0||wJ+1,i) = ψ̃(0) + ψ(y∗
i H(oi)), ∀i = 1, 2, ..., m , (91)

which ties up the scs to (90); the guaranteed decrease in the right-hand side
of (90) by (89) makes that there remains to check when the right-hand side be-
comes negative to conclude that ULS has reached the optimum. This gives the
bound of the Theorem.

The bound in Theorem 2 is mainly useful to prove that the WLA guarantees a
convergence rate of order O(m/a2

γ) for ULS, but not the best possible as it is in
some cases far from being optimal.

To finish up with ULS, if we update a single leveraging coefficient for ht at
step j, then the WLA can be simplified as (using the same notation as in (81)):

∣∣∣1�
{t}M

�wj

∣∣∣ ≥ γjZj . (92)

Without loss of generality, we can suppose that the edge of ht on wt is always
strictly positive, since otherwise we can consider −ht. Suppose that ht is re-
trieved by a weak learner, distinct from ULS: the role of the weak learner is to
obtain a bottomline weak classifier ht with strictly positive edge, while ULS sys-
tematically reduces the edge of this weak classifier to zero by a geodesic walk in
(69), yielding 1�

{t}M
�wj+1 = 0 in (81), and forcing the weak learner to find a

different weak classifier for the next step. Most of ULS thus reduces to an edge
game parametrized by M, the weak learner picking 1�

{t} while ULS picks wj+1.
The game ends when the weak learner has no more possibility to ensure the
WLA, in which case ULS has converged to the optimal classifier H�.
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5.2 On-Line Learning

To keep this Section short, we refer the reader to e.g. [17,25] for more details. The
principle of the learning algorithm is simpler than for ULS, as we only make the
geodesic walk each time an example is received from the stream. The geodesic
walk is parametrized by (55) and (56), from which we obtain Algorithm 2 [25].

We recall that function ϑ is a general bcl Dφ(yt||∇−1
φ (w�

t−1ot)), and that our
objective is to obtain an upperbound of the kind ε

(
ST , {Ht}T−1

t=0

)
≤ ε(ST , Hr)+

penalty (10), where Hr is a reference LS characterized by weight (leveraging)
vector r.

There is a particularly interesting Bregman divergence to compute a conve-
nient penalty, the q-norm divergence Dψq [15,25] (Table 1). There is an interest-
ing result regarding Dψq for OLS, namely that if we perform the geodesic walk
on Dψq , it is necessarily bounded. Its proof follows [25].

Lemma 9. Assume 1 < q ≤ 2 ≤ p < ∞, and 1/p + 1/q = 1. Then:

Dψq(wt−1||wt) ≤ η2(p − 1)
2

(∇−1
φ (w�

t−1ot) − yt)2||ot||2p . (94)

Furthermore, it can be noticed that we have:

Dφ(yt||∇−1
φ (w�

t−1ot)) =
ϕ(xt)

2
(∇−1

φ (w�
t−1ot) − yt)2 , (95)

for some xt in the interior of the interval defined by ∇−1
φ (w�

t−1ot) and yt, where
ϕ is as defined in (84) with ψ̃ = φ. There are two reasonable assumptions to
make about Algorithm 2. The first states that the p-norm of any observation of
the stream is upperbounded:

sup
t

||ot||p ≤ λp . (96)

The second states that ϕ(xt) is lowerbounded in (95), which is also reasonable
given that the main quantity which could be responsible of extreme deviations
in the geodesic walk is itself bounded (96):

inf
t

ϕ(xt) ≥ λ . (97)

Algorithm 2: Algorithm OLS(S)
Input: Stream S of examples (ot, ct), t = 1, 2, ..., with ot ∈ R

m;
Let w0 ← 0;
for t = 1, 2, ... do

//Classifier Update: make a geodesic walk on Dψq to minimize ϑ =bcl (55)

wt ← (−η(∇−1
φ (w�

t−1ot) − yt)ot) � wt−1 ; (93)

Output: Ht(o) .= w�
t o ∈ LS
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The following Theorem, whose proof follows [25], gives us a desired bound on
the deviation of Ht with respect to the reference LS Hr. To interpret this bound,
one can take as reference the optimal vector r� of the optimal LS H� in term
of bcl, and suppose that r� has few non-zero entries. In this case, Algorithm 2
manages to stay quite close to the optimum.

Theorem 3. Assume 1 < q ≤ 2 ≤ p < ∞, 1/p + 1/q = 1, and

η
.=

λ

(p − 1)λ2
p

(98)

in Algorithm 2 (parameters defined in (96) and (97)). Then the following holds
for any T > 0:
T∑

t=1

Dφ(∇−1
φ (w�

t−1ot)||∇−1
φ (r�ot)) ≤

T∑

t=1

Dφ(yt||∇−1
φ (r�ot)) +

(p − 1)λ2
p||r||2q

2λ
.

Proof: In the same way as we do for (74), we can measure a progress to reference
dt as:

dt
.= Dψq(r||wt−1) − Dψq(r||wt) . (99)

(58)
= (wt−1 − r)�(∇ψq(wt−1) − ∇ψq(wt)) − Dψq(wt−1||wt)

(93)
= η(∇−1

φ (w�
t−1ot) − yt)(w�

t−1ot − r�ot) − Dψq(wt−1||wt) . (100)

From the three-points property in (58), we obtain for any BLF Dφ:

Dφ(yt||∇−1
φ (w�

t−1ot)) + Dφ(∇−1
φ (w�

t−1ot)||∇−1
φ (r�ot))

− Dφ(yt||∇−1
φ (r�ot))

= (∇−1
φ (w�

t−1ot) − yt)(w�
t−1ot − r�ot) . (101)

Combining (100) and (101), we get:

dt = η
{
Dφ(∇−1

φ (w�
t−1ot)||∇−1

φ (r�ot)) − Dφ(yt||∇−1
φ (r�ot))

}

+ηDφ(yt||∇−1
φ (w�

t−1ot)) − Dψq(wt−1||wt)

(94),(96),(97)
≥ η

{
Dφ(∇−1

φ (w�
t−1ot)||∇−1

φ (r�ot)) − Dφ(yt||∇−1
φ (r�ot))

}

+
η

2
(∇−1

φ (w�
t−1ot) − yt)2

(
λ − η(p − 1)λ2

p

)

(98)
= η

{
Dφ(∇−1

φ (w�
t−1ot)||∇−1

φ (r�ot)) − Dφ(yt||∇−1
φ (r�ot))

}
.

We sum this inequality for t = 1, 2, ..., T , rearrange, and get:
T∑

t=1

Dφ(∇−1
φ (w�

t−1ot)||∇−1
φ (r�ot))

≤
(p − 1)λ2

p

λ

T∑

t=1

dt +
T∑

t=1

Dφ(yt||∇−1
φ (r�ot)) . (102)
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Now, we sum (99) for t = 1, 2, ..., T , and get:

T∑

t=1

dt = Dψq(r||w0) − Dψq(r||wT )

=
1
2
||r||2q − Dψq(r||wT )

≤ 1
2
||r||2q . (103)

We combine (103) and (102), and get the statement of the Theorem.

6 Applications to More Classifiers

In Subsection 2.1, we have presented the importance of the choice of the classifier
for the user. In the preceding Section, all algorithms rely on linear separators.
While the choice seems natural for on-line learning — it is easy to update a
LS, while it may be much harder to cope with on-line modifications of DT —,
the boosting setting calls for more applications to other formalisms. Apart from
LS, the main formalisms on which boosting algorithms have been developed are
decision trees [23,21]. We now show that ULS is scalable to DT as well. More
precisely, one can naturally induce a DT with ULS, and it turns out that this
algorithm, which immediately captures the theoretical properties of ULS, is a
generalization of the most popular DT induction algorithms [9,23,34].

We refer to Subsection 2.1 for a presentation of DT. Recall that the structure
of a DT makes it possible to label the leaves with [0, 1] or arbitrary real values.
In Figure 1, the tree uses the former convention. In Figure 14 (left), we provide
a tree which is equivalent from the empirical risk standpoint, but uses signed
values at the leaves. We make use some new notations that we now present.

A DT H induces a partition of S according to subsets Sk, where k ∈ L(H) ⊂
N∗, and L(H) is a subset of natural integers in bijection with the set of leaves of

S3

v2 = 1

v1 = 1v1 = 0

+1 −1

+1

h1

h2

h5

h3

h4

S

v2 = 1

v1 = 0 v1 = 1

(α3, h3) = (3, +1)
(α1, h1) = (−2,+1)
(α2, h2) = (3, +1)
(α4, h4) = (0, +1)(α5, h5) = (2,−1)S2S1

v2 = 0v2 = 0

Fig. 14. Left: a decision tree with 3 leaves (squares) and 2 internal nodes (circles), with
real-valued leaves, equivalent from the empirical risk standpoint to the DT in Figure
1; right: an equivalent linearized decision tree, for the proof of Theorem 4
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Algorithm 3: Algorithm UDT(S, φ)
Input: Learning sample S , permissible function φ;
Let H ← single leaf;
for j = 1, 2, ...J do

Pick some leaf k′ ∈ L(H), and some observation variable v such that:

Aφ(H,H|k′→v) .=
∑

k∈L(H|k′→v)

|Sk|
bφ

(
−φ

(
|S+

k |
|Sk|

))

−
∑

k∈L(H)

|Sk|
bφ

(
−φ

(
|S+

k |
|Sk|

))

< 0 ; (104)

Let H ← H|k′→v;

Output: H ∈ DT

the DT (see Figure 14). We let S+
k

.= {(o, c+) ∈ Sk} denote the subset of positive
examples that fall on leaf k. To decide a class, we can label leaves using real values
to make predictions, following the convention of linear separators (used in Figure
14), or use [0, 1] values. In fact, using assumption A2 on balanced convex losses,
the estimator for the class membership probabilities in (3) naturally becomes
for leaf k:

P̂r[c = c+|H ; o reaches leaf k] =
|S+

k |
|Sk| ∈ [0, 1] .

The most popular DT induction algorithms integrate a stage in which a large
DT is induced in a top-down fashion, the so-called TDIDT scheme (Top-Down
Induction of DT). This scheme consists, after having initialized the DT to a
single leaf, in repeatedly replacing a leaf by a sub-tree with two leaves (a stump)
[9,23,34]. For this reason, it is convenient to define, for any k ∈ L(H) and any
Boolean description variable v, H|k→v to be the DT built from H after having
replaced leaf k by the subtree of two leaves rooted at v. The TDIDT scheme
can be conveniently abstracted as displayed in Algorithm 3. In UDT, φ is the
free parameter which is instantiated with different choices to yield all popular
schemes: (26) is chosen in [9], (29) is chosen in [34] and (28) is chosen in [23]. In
fact, it is the opposite of the permissible function which is used (we would have
φ = ψ̃ in ULS), but we keep φ in order not to laden our notations. All popular
TDIDT schemes would also also normalize Aφ (division by m), but this does not
change the choices made for k′ and v, as after having picked k′, they all pick the
best stump, i.e. the one which minimizes (104).

Because all φ considered in existing algorithms are permissible, we also restrict
ourselves to balanced convex surrogates, and so we seek the minimization of the
bcs in (31). In the following Theorem, we not only show that UDT achieves
the minimization of any bcs with signature φ: while bitterly different from each
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other on paper, we show that UDT and ULS are offshoots of the same algorithm,
thereby generalizing an observation of [19] to the whole family of losses that meet
assumptions A1, A2 and A3.

Theorem 4. The output of UDT(S, φ) converges to a classifier H� realizing:

H� = arg min
H∈DT

εφ
R
(S, H) . (105)

Proof: The proof makes use of linearized decision trees (LDT) of [19]. A LDT
has the same graph shape as a DT, but real values are put on every node (not
just on leaves). The classification of some observation sums these real values over
the whole path that it follows, from the root to a leaf. To each path from the
root to a leaf can thus be associated a constant LS, that sums these real values.
The right part of Figure 14 presents how to generate the equivalent LDT from
the DT given on the left. We can indeed check that α1h1 + α2h2 + α4h4 = +1,
and so on for the other leaves.

Thus, we can use ULS to build each of these LS: each feature ht is constant
and put on some tree node, ULS is run on the subset of S that reaches the node,
in order to compute the leveraging coefficient αt. The splits are computed after
a further minimization of the given bcs.

Suppose that the current LDT H has T nodes, and we wish to compute αk for
some hk located at leaf node index k. To do so, we number the internal nodes
using natural integers, excluding from the choices the integers chosen for the
leaves. Let ℘(k) be the set of indices corresponding to the path from the root to
leaf k. The solution of (70) can be computed exactly, and yields:

αk =
1
hk

⎛

⎝∇φ

(
|S+

k |
|Sk|

)
−

∑

t∈℘(k)\{k}
αtht

⎞

⎠ .

Thus, for any observation o that reaches leaf k, we get:

H(o) = ∇φ

(
|S+

k |
|Sk|

)
, (106)

naturally the inverse of (105). Finally, the bcs of H simplifies as:

εφ
R
(S, H) .=

∑

i

Fφ(y∗
i H(oi)) =

1
bφ

∑

i

Dφ(yi||∇−1
φ (H(oi)))

=
1
bφ

∑

k∈L(H)

∑

(o,y)∈Sk

Dφ

(
y
∥∥∥

|S+
k |

|Sk|

)

=
1
bφ

∑

k∈L(H)

|Sk| ×
{

|S+
k |

|Sk| Dφ

(
1
∥∥∥
|S+

k |
|Sk|

)
+

(
1 − |S+

k |
|Sk|

)
Dφ

(
0
∥∥∥

|S+
k |

|Sk|

)}

= −maφ

bφ
+

∑

k∈L(H)

|Sk|
bφ

(
−φ

(
|S+

k |
|Sk|

))
.



Intrinsic Geometries in Learning 211

It is straightforward to check from this last equality and Lemma 2 that the
progress to optimum in (74) ULS becomes exactly (104) in UDT. The LDT
obtained is equivalent [19] (see also Figure 14) to a twin DT in which we put at
leaf k either:

|S+
k |

|Sk| ∈ [0, 1] ,

or:

∇φ

(
|S+

k |
|Sk|

)
∈ im(∇φ) ⊆ R ,

eventually closing once again the domain of the gradient of φ to ensure proper
scalability in [0, 1]. We finally end up with UDT.

From (106), it comes that the [0, 1] value put at leaf k satisfies:

|S+
k |

|Sk| = ∇−1
φ (H(o)) ,

with o any observation that reaches leaf k. From Subsection 3.4 and Lemma 3,
it comes that the leaf value is also ∇−1

φ (θ), and so fitting a DT to the minimiza-
tion of a bcs yields local (leaves-based) maximum likelihood estimators of the
expectation parameter of the exponential family defined by signature φ.

7 Experiments

This section is an attempt to summarize some interesting experimental proper-
ties that seem to emerge out of the numerous surrogates and classifiers consid-
ered. To remain concise, we have chosen to focus only on ULS. We have compared
against each other 11 flavors of ULS, including AdaBoost [36], on a benchmark
of 52 domains (49 from the UCI repository [7]), with 32 ≤ m ≤ 14500. True
risks are estimated via stratified 10-fold cross validation; ULS is ran for r (fixed)
features ht, each of which is a boolean rule: If Monomial then Class= ±1 else
Class = ∓1, with at most l (fixed) literals, induced following the greedy mini-
mization of the scs at hand. Leveraging coefficients (70) are approximated up
to 10−10 precision. Figure 15 summarizes the results.

Out of the 11 flavors, only one picks ψ in scs\bcs (AdaBoost); the ten others
exclusively rely on bcs. Out of these ten, the first four flavors pick φ in (26),
(27), (28) and (29). The fifth uses another generalization of (28):

φυ(x) .= (x(1 − x))υ , ∀υ ∈ (0, 1) . (107)

Recent works have demonstrated the interest in fitting a metric (Mahalanobis)
to the domain at hand, prior to using an instanced-based (non inductive) clas-
sification algorithm [11]. The wide range of scs available for ULS inspired us to
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kill two birds in one shot: mix the adaptive tuning of a scs to the domain at
hand with the inductive learning of a LS with ULS on this domain. We relate
experiments on the adaptive tuning of a bcs out-of-a-bag of bcs. This gives
the five last flavors of ULS with bcs. The first four fit the bcs at each stage of
the inner loop (for j ...) of ULS. Two (noted “F.”) pick the bcs which mini-
mizes the empirical risk in the bag; two others (noted “E.”) pick the bcs which
maximizes the current edge. There are two different bags corresponding to four
permissible functions each: the first (index “1”) contains (26), (27), (28) and
(29); the second (index “2”) contains (27), (28), (29) and (107). We wanted to
evaluate (26) because it forces to renormalize the leveraging coefficients in H
each time it is selected, to ensure that the output of H lies in [−1, 1]. The last
adaptive flavor, F ∗, “externalizes” the choice of the bcs: it selects for each fold
the bcs which yields the smallest empirical risk in a bag corresponding to five φ:
(26), (27), (28), (29) and (107). It was suggested by the fact that, if ULS resists
overfitting as AdaBoost does, we might hope for good performances at least for
small classifiers. We selected small bags not only for time considerations: if there
were to be some particular interest in a fine selection of the bcs, it would ideally
already happen for small bags.

All results in Figure 15 advocate for the superiority of F ∗ against all other
approaches. For example, when l = 2, r = 10, F ∗ tops all algorithms for almost
half the domains. Even when we replace the .1 threshold probability by a .01
threshold probability (see Figure 15), F ∗ still beats 7 algorithms. An interesting
phenomenon happens for small classifiers: permissible functions with stronger
concave regimes (e.g. (28)) tend to improve performances. While it was previ-
ously remarked for decision tree induction in [23], it is actually predicted up
to some extent by Theorem 2, as the bound on J is inversely proportional to
the minimum of the second derivative of ψ̃. This phenomenon becomes (pre-
dictibly) dampened as classifiers become large, but we ultimately cannot con-
clude that (29) beats (28) and / or AdaBoost, according to Student paired t-test
(l = 3, r = 100).

This makes the scl derived from (28) a very interesting alternative to the
logistic loss and AdaBoost, which might be useful in other supervised learning
schemes as well. Finally, mixing permissible functions with different gradient
images (E1, F1) is clearly a bad choice, but F ∗ and E2 are advocacies for further
works on mixed fittings of scs and classifiers. This is confirmed by a close look
at the domains: for almost each algorithm and each choice of (l, r), there exists
a domain on which it ranks first, and one on which it ranks last. This is all
the more important as previous works highlight the role of early stopping in
consistency for convex surrogates [6].
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