Skip to main content

Fault Analysis Attack against an AES Prototype Chip Using RSL

  • Conference paper
Topics in Cryptology – CT-RSA 2009 (CT-RSA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5473))

Included in the following conference series:

Abstract

This paper reports a successful Fault Analysis (FA) attack against a prototype AES (Advanced Encryption Standard) hardware implementation using a logic-level countermeasure called Random Switching Logic (RSL). The idea of RSL was proposed as one of the most effective countermeasures for preventing Differential Power Analysis (DPA) attacks. The RSL technique was applied to AES and a prototype ASIC was implement with a 0.13-μm standard CMOS library. Although the main purpose of using RSL is to enhance the DPA resistance, our evaluation results for the ASIC reveal that the DPA countermeasure of RSL can negatively affect the resistance against FA attacks. We show that the circuits using RSL has a potential vulnerability against FA attacks by increasing the clock frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kocher, P.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)

    Google Scholar 

  2. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Brier, E., Clavier, C., Oliver, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Shamir, A., Tromer, E.: Acoustic cryptanalysis on noisy people and noisy machines. Preliminary proof-of-concept presentation, http://www.wisdom.weizmann.ac.il/~tromer/acoustic/

  5. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults (extended abstract). In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  6. FIPS Pub. 197: Specification for the AES (November 2001), http://csrc.nist.gov/pub-lications/fips/fips197/fips-197.pdf

  7. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Miller, V.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

    Google Scholar 

  9. Koblitz, N.: Elliptic curve cryptosystem. Math. Comp. 48, 203–209 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA resistant ASIC or FPGA implementation. In: Proceedings of Design, Automation and Test in Europe Conference (DATE 2004), pp. 246–251 (2004)

    Google Scholar 

  11. Trichina, E.: Combinational logic design for AES subbyte transformation on masked data. Technical report, Cryptology ePrint Archive: Report 2003/236 (2003)

    Google Scholar 

  12. Mangard, S., Popp, T., Gammel, B.M.: Side-channle leakage of masked cmos gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Popp, T., Mangard, S.: Masked dual-rail pre-charge logic: DPA-resistance without routing constraints. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 172–186. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Popp, T., Kirschbaum, M., Zefferer, T., Mangard, S.: Evaluation of the masked logic style MDPL on a prototype chip. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 81–94. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Tiri, K., Schaumont, P.: Changing the odds against masked logic. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 134–146. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Schaumont, P., Tiri, K.: Masking and dual-rail logic don’t add up. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 95–106. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Gierlichs, B.: DPA-resistance without routing constraints? In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 107–120. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Suzuki, D., Saeki, M., Ichikawa, T.: Random switching logic: A new countermeasure against DPA and second-order DPA at the logic level. IEICE Transaction on Fundamentals E90-A(1), 160–169 (2007)

    Article  Google Scholar 

  19. Suzuki, D., Saeki, M.: Satoh A. A design methodology for a DPA-resistant cryptographic LSI with RSL techniques (I). In: Symposium Record of Symposium on Cryptography and Information Security (SCIS 2008), 6 pages (2008)

    Google Scholar 

  20. Suzuki, D., Saeki, M., Ichikawa, T.: Random switching logic: A countermeasure against DPA based on transition probability. Technical report, Cryptology ePrint Archive: Report 2004/346 (2004)

    Google Scholar 

  21. Research Center for Information Security (RCIS). Side-channel attack standard evaluation board (SASEBO), http://www.rcis.aist.go.jp/special/SASEBO/index-en.html

  22. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hardware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 157–171. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Research Center for Information Security (RCIS). Side-channel attack standard evaluation board (SASEBO), http://www.rcis.aist.go.jp/special/SASEBO/CryptoLSI-en.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sakiyama, K., Yagi, T., Ohta, K. (2009). Fault Analysis Attack against an AES Prototype Chip Using RSL. In: Fischlin, M. (eds) Topics in Cryptology – CT-RSA 2009. CT-RSA 2009. Lecture Notes in Computer Science, vol 5473. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00862-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00862-7_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00861-0

  • Online ISBN: 978-3-642-00862-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics